
Institution Building without Commitment∗

Marco Bassetto
Federal Reserve Bank of Minneapolis

Zhen Huo
Yale University

José-Víctor Ríos-Rull
University of Pennsylvania

CAERP, CEPR, NBER, UCL

Thursday 4th January, 2024

Abstract

We propose a theory of slow implementation of “good” policies, suitable for environments
featuring time consistency. We downplay the role of the initial period by allowing agents both
to wait for future agents to start equilibrium play and to restart the equilibrium by ignoring
past history. The allocation gradually transits towards one that weighs both short- and long-
term concerns, stopping short of the Ramsey outcome but greatly improving upon Markovian
equilibria. We use the theory to account for the slow emergence of climate policies and for the
gradual reduction of global tariff rates.
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Europe will not be made all at once, or according to a single plan.
It will be built through concrete achievements which first create
a de facto solidarity.

Robert Schumann, May 9th 1950

1 Introduction

Why are many obvious arguably “good” policies (against climate change, to expand free trade, or
even the extension of civil rights or the expansion of the European Union) adopted slowly? We claim
that it is often due to an incentive of the current policy makers to delegate to future policy makers
the implementation because of the initial costs involved in carrying out a fast adoption.1 To make
the case, we postulate environments where policy makers display time inconsistency, either due to
having a shorter horizon than the population at large, or to the presence of an incentive problem.
We propose an equilibrium concept—organizational equilibrium—where decision makers are allowed
to wait and avoid addressing the issue as well as to replicate the behavior of previous ones. As a
result, good institutions have to arise slowly but eventually converge to reasonable outcomes—the
best time-invariant policy from the point of view of any agent. We apply our ideas to the setting
of carbon taxes and to the expanding of free trade, but it is much more general, embracing many
environments including those that display preferences with heterogeneous discounting (Jackson and
Yariv, 2014).

The gist of our approach is to model explicitly aggregate economies where policy makers have to
address an issue where short term costs are at odds with long term benefits and a time inconsistency
problems arise. A fast implementation of good policies with delayed benefits gives incentives to
wait, but agreement over what good policies are in the distant future opens the door for their
gradual implementation. We then use organizational equilibrium to analyze the policy outcomes.
The implied allocations are vastly superior to those predicted by Markov equilibria, yet they do not
need to be supported by trigger-strategy reversions to dominated outcomes. An attractive feature of
our equilibrium is that it involves a gradual evolution of policy and institutions. We show how the
equilibrium is simple to study: although we provide game theoretic foundations, it can be computed
recursively by looking just at the equilibrium path, as is the case in competitive equilibria that are
the workhorse of macroeconomic models. This property makes it much easier to apply to specific
macroeconomic problems, particularly where the blend of strategic and competitive elements would

1As an example, though China started to take an active role in carbon reduction more recently, the government was
initially reluctant to implement a stringent environmental policy. The former president Hu Jintao stated that “China
is a developing country in the process of industrialization and modernization... China’s central task now is to develop
the economy and make life better for the people.” at 2008 G8 Outreach Session.
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otherwise require an intricate description of the agents’ strategies.2 It is also easily amenable to
comparative statics analysis.

The substantive concern that we address in this paper is the slowness in the implementation of policies
that are generally considered desirable. We highlight two such sets of policies that are central issues
of our time with relative agreement among experts: that carbon emissions should be reduced, and
reduced fast, to mitigate global warming and that the reduction of trade barriers yield more efficient
allocations. Yet governments are not embracing these policies, at least to the degree that is typically
desired, but they are timidly moving in the right direction: there is a gradual increase of the carbon
tax3 and it has taken several decades to reduce the global tariff rate to its current level. While there
can be other reasons for this slowness, we do believe that a satisfactory explanation has to come
from models that are explicit about the intertemporal conflicts associated with those policies.

The discussion around policies on climate change has often been cast in terms of fairness and insti-
tutional agreements across generations that support better policies. Taking this concern to heart,
we extend the climate change model in Golosov et al. (2014) to accommodate possible conflicts of
interest between current and future generations: current generations bear the cost of reduced carbon
emissions and future generations benefit from a cooler planet. Organizational equilibrium resolves
this tension by a graduate increase in carbon taxation as in the data while neither the Markov equi-
librium nor the Ramsey outcome yields predictions that are consistent with the observed qualitative
features. In similar fashion, we see the implementation of free trade as a conflict between the import
substitute producers and long-run growth (Autor et al., 2013; Acemoglu et al., 2016; Pierce and
Schott, 2016; Caliendo et al., 2019). Accordingly, we pose a two-country model with international
trade where the optimal tariff rate strikes a balance between the short-run redistribution and the
long-run growth. A lower tariff rate improves allocation efficiency and facilitates long-run growth, but
it hurts the short-run welfare of workers in the importing sector. Therefore, the current government
always prefers future governments to implement the reduction of tariff rates. Again, organizational
equilibrium resolves the tension with a graduate policy change, reducing tariffs, which is consistent
with the actual globalization process.

The theoretical foundation of organizational equilibrium is based on the logic that there is nothing
special in the initial period (as Ramsey type solutions assume), yet some intertermporal colaboration
is possible (which Markov solutions neglect). Specifically, we argue that equilibria should satisfy three
conditions in environments with a sequence of decision makers that see themselves in a similar spot

2Bassetto (2005) describes some of the challenges that such hybrid environments entail.
3Based on the World Bank Carbon Pricing Dashboard, we document that (1) the carbon taxes rise gradually over

the last 30 years in Scandinavian countries that first initiated the carbon tax system; (2) across different regions, the
level of current carbon tax is increasing in the number of years since the carbon tax implementation, controlling the
level of per capita GDP.
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—a form of stationarity even if there are state variables. The first such condition, a no-restarting
condition, is that any outcome should have the property that no decision maker would rather become
an earlier member of the decision-making sequence. This limits the use of trigger strategies as a future
punishment. A second condition, a no-delay condition, prevents free riding at the start of the process:
no agent can do better by sitting out the system (playing Markov) and waiting for future agents
to start on a given equilibrium path and eliminates the intrinsic advantage that is often associated
with the first agent. This condition prevents jumping to desirable allocations fast. We interpret
the implications of this condition as the need for institutions to slowly earn good will, like earning
a reputation for good behavior without need of unobserved types or triggers. Finally, the third
condition is an an optimality requirement within the class of allocations that satisfy the previous two
requirements. Note that these conditions are defined over properties of the equilibrium path which
drastically simplifies the analysis of any application.

Environments with time consistency issues (hyperbolic discounting consumers but also carbon tax
and tariff rates policy settings) have typically been modeled as a specific game that has a sequence of
decision makers sometimes described as the future selves or future governments. In these games the
time zero agent has a special position. We pose our equilibrium concept as a particular refinement
of the set of subgame perfect Nash equilibria of this game that tries to deemphasize the preeminent
role of the time zero agent. But we also pose an alternative game to model the same class of
environments, where any agent has the ability to hide the past history. This alternative game
eliminates the specificity of the time zero agent and conveys a recursive spirit to the passage of
time. We show how the no-delay condition becomes a necessary condition for any symmetric, Pareto
optimal subgame perfect equilibrium of this game.

Under mild conditions, we prove the existence of an organizational equilibrium. The equilibrium
converges to a stationary allocation that we refer to as a steady state.4 From this steady state,
the entire transition path then can be solved recursively.5 Crucially, due to the no-delay condition,
agents’ actions converge only gradually. The stationary allocation to which our equilibrium converges
weighs the concerns over immediate events associated to time inconsistent environments with those
later events. It has a larger weight into the future than the allocation of the Markov equilibrium
but not so much as that implied by the Ramsey solution that completely ignores any short term
considerations. It is also easy to calculate and characterize. In fact it is the best constant action

4We call the state vector of the long-run stationary allocation a steady state, but note that it does not have the
property that, if the economy starts there, it will remain there for ever, as sometimes steady state is understood. This
is because the equilibrium sequence of actions converges to the constant action that supports this steady state only
asymptotically.

5On the technical side, while the approach in Abreu et al. (1986, 1990) cannot be adopted to construct the set of
continuation values to compute organizational equilibria or reconsideration-proof equilibria, our method exploits some
similar ideas in its quest for a recursive representation, which we think may have independent value.
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from the point of view of the initial decision maker. Notice that the policy outcomes need not be
particularly “good” only that they will converge to the ones that are “good”. In this sense our applied
analysis predicts that the actual policies about climate change or international trade eventually will
hit the right level, even if we will end up with a hotter planet than we would like.

Our paper is related to the literature that studies macroeconomic environments with time-inconsistency
features typically characterized in terms of their Markov equilibria (e.g., Cohen and Michel (1988),
Currie and Levine (1993), Krusell and Ríos-Rull (1996), Klein and Ríos-Rull (2003), Klein et al.
(2005), Bassetto and Sargent (2006), Klein et al. (2008), Bassetto (2008), Krusell et al. (2010),
Martin (2011), Azzimonti (2011)). It also addresses the type of environments previously studied by
posing trigger strategies (Chari and Kehoe (1990), Phelan and Stacchetti (2001)). Our workhorse ex-
ample builds upon the quasi-geometric discounting growth model analyzed by Strotz (1956), Phelps
and Pollak (1968), Laibson (1997), Krusell and Smith (2003), Bernheim et al. (2015), Chatterjee
and Eyigungor (2016), Cao and Werning (2018), Halac and Yared (2017), among others. Finally,
we build on the literature on refinements of subgame perfect equilibrium, particularly in relation to
renegotiation proofness (Farrell and Maskin (1989), Kocherlakota (1996), Asheim (1997), Ales and
Sleet (2014)).

Other papers that have analyzed dynamic institution building applied to macroeconomic problems
include Acemoglu and Robinson (2000), Acemoglu et al. (2012), and Acemoglu et al. (2015). These
papers emphasize the role of changing the distribution of power within groups in the context of
Markov equilibria as the mechanism that generates slow institutional buildup. Piguillem and Riboni
(2015, 2020) explore the role of institutional arrangements where the status quo plays a special role
as a way of disciplining time-inconsistent policymakers in the presence of heterogeneity.

Our notion of equilibrium is related to Reconsideration Proofness in Kocherlakota (1996) which is
based on a notion of symmetry in the values obtained by all agents along the equilibrium path. It is
also related to the equilibrium concept for overlapping-generations economies in Prescott and Rios-
Rull (2005) where the symmetry included the passive first generation, but were the notion of no-delay
was implicitly stated if one were to interpret the second generation as the first. In this paper we make
the symmetry notion operational via the no restarting condition and we make explicit the no-delay
condition. We also make the definition of organizational equilibrium to be compatible with state
variables.6 Our use of state variables is defined for environments that display a weak separability
property: preferences can be decomposed between a set of actions that we label “re-scaled actions”

6Kocherlakota defines a “state” in his work, but his state only depends on the expectation about current and future
actions and is thus purely forward looking. In our case, we define a state as arising from past actions (including possibly
past actions of nature, if randomness is present). This is in line with the literature on optimal control and dynamic
programming.
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and the state of the economy.7 Separability allows us to compare actions and outcomes across periods
in which state variables are different.

For economies that do not have the separability property we propose to approximate them using
separable environments as approximating economies. The approximation, while being first order, is
not necessarily linear, but can take any functional form of our choice. We can look for functional
forms that yield solutions to the Markov and Ramsey allocations that are close to those of the original
economy that can be found with arbitrary accuracy using standard methods. Having similar Markov
and Ramsey allocations gives a rationale to believe that the organizational equilibrium allocation of
the approximating economy is also close to our object of interest.

Two other papers are of special relevance. Like us, Nozawa (2018) extends the notion of a reconsideration-
proof equilibrium to economies with state variables. However, his extension imposes too strict re-
quirements and leads to nonexistence of an equilibrium in many applications. By relying on weak
separability, our approach allows us to define “state-free” notions of the economic environment and
to establish existence. Brendon and Ellison (2018) analyze optimal policy in the Ramsey tradition,
but they restrict the planner to choosing policies that satisfy a recursive Pareto criterion: this cri-
terion disallows sequences that benefit policymakers in the early periods but are dominated for all
policymakers from a given time onward. Like them, we also reject policies that allow early decision
makers to dictate future paths that lead to early benefits purely at the expense of future decision
makers. Rather than developing an optimality criterion, we propose a solution concept aimed at
positive analysis, where implicit cooperation across policymakers at different times builds over time.
Because of this different motivation, our “no-restarting condition” is imposed on a period-by-period
basis. The presence of state variables causes problems in their environment as well, and our approach
based on weak separability could be fruitfully applied there too.8 Interestingly the allocation that
they propose coincides with the steady state to which our equilibrium converges to, the one that
maintains behavior constant and is the best one among those.

Concerning the specific applications, Matsuyama (1990) analyzed a setting where trade liberalization
creates a time inconsistency problem. He studies subgame-perfect equilibria, finding cyclical behav-
ior, but argues that these equilibria featuring temporary protectionism fail renegotiation proofness.
The short-run motive for protectionism in our environment is different from his, as we emphasize the
adverse distributional impact accruing to workers in the sector exposed to international competition
rather than to the firms that invest in that sector; more importantly, by applying our equilibrium

7The same type of separability property is also explored in Halac and Yared (2014) and Halac and Yared (2017),
but they focus on different SPE refinements where agents’ type is private information.

8Our approach encompasses the more specific cases introduced by Brendon and Ellison in their latest version to
account for state variables.
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notion we find equilibria that gradually build institutions supporting free trade, and can make pre-
dictions about the level at which the process stops. Maggi and Rodríguez-Clare (2007) also build a
political-economy model that entails features similar to our environment, but they focus on a one-
time agreement that sets a dynamic path of liberalization. They also find that an agreement features
gradual liberalization, since the adverse effect on sectors exposed to international competition grad-
ually vanish as factors of production (capital, in their case) become more mobile across sectors over
time. In a setting in which trade agreements can evolve over time, their environment also generates
time inconsistency. Using our equilibrium, we show how this time inconsistency is resolved and how
liberalization can take place in a succession of agreements, rather than a single one.

We start by posing the issues with time-inconsistent preferences in the context of the well understood
quasi-geometric discounting growth model with log utility and full depreciation in Section 2. We
define organizational equilibrium for separable economies in Section 3, where we also describe the
connections to game theory and the strategy to study non-separable economies by using approximat-
ing separable economies. We also show how to tackle economies where a large decision maker such
as the a policymaker interacts with a continuum of competitive agents, which requires that we adapt
our concept to hybrid settings of competitive and strategic behavior. We then turn to the two main
substantive issues addressed in this paper. Section 4 has the analysis of how the slow implementation
of policies to address climate change is both a fair description of the policies chosen by current gov-
ernments as well as the predictions of our equilibrium notion because of the time inconsistency of the
environment. We then turn to study the implementation of free trade policies, again documenting
the slow implementation of tariff reductions as well as how a suitable multi-country model generates
them as an organizational equilibrium in Section 5. Section 6 concludes.

2 A Motivating Example

Our equilibrium concept can be heuristically described as the best among those requiring that:

• in equilibrium no period-t agent can do worse than any period-τ agent for τ < t because then
it could become a τ agent;

• in equilibrium no period-t agent can do worse than by staying out of the plan and letting the
equilibrium unfold as if the economy started in the following period.

To provide the basic intuition, we revisit the canonical growth model with quasi-geometric discount-
ing, log utility and full depreciation and compare what our equilibrium notion implies relative to
other standard equilibrium concepts. The quasi-geometric discounting could be interpreted more
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broadly as the consequence of aggregating different parties in the population with different time
preferences (Jackson and Yariv, 2014, 2015).9

This example is easy to characterize (it has some closed form solutions), and it allows us to ignore any
consideration related to a competitive equilibrium emerging from the interaction with other agents,
a case that we analyze in Section 3.6. More importantly it displays a form of separability that allows
us to decompose the rewards of any feasible allocation as a separable function of the initial capital
and the subsequent sequence of saving rates. We will exploit this decomposition to provide a way of
comparing rewards across agents who may be endowed with different levels of capital.

Assume that the production function is
f(kt) = kαt ,

and the agent’s period utility function is

u(ct) = log ct.

The relevant state of the economy is capital kt with law of motion

kt+1 = f(kt)− ct.

The lifetime utility for the agent at period t is

u(ct) + δ

∞∑
τ=1

βτu (ct+τ ) .

It is easy to see that the agent will disagree with itself in the next period if δ 6= 1.

To see the separability property, it is useful to work with saving rates defined as st = kt+1/k
α
t . Any

sequence of saving rates {sj}∞j=0, together with an initial capital stock k0, implies a sequence of
capital levels kt = kα

t

0 Πt−1
j=0s

αt−j−1

j . The corresponding lifetime utility for the agent in period 0 is

U(k0, s0, s1, . . .) = log[(1− s0)kα0 ] + δ

∞∑
j=1

βj log[(1− sj)kαj ] =
α(1− αβ + δαβ)

1− αβ
log k0 + V (s0, s1, . . .),

9Jackson and Yariv (2014, 2015) discuss how present bias emerges naturally in collective decision problems when
agents have heterogeneous discount factors. One interpretation of this setting is that it is the problem of a planner
facing such households. The functional form that we assume follows Laibson (1997) and corresponds to the one implied
by a utilitarian planner aggregating the preferences of a two-person household with heterogeneous discount factors,
in the limiting case in which one member of the household only cares about present consumption. We show how the
equilibrium concept can be applied away from the limiting case in Appendix C.
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where

V (s0, s1, . . .) ≡ log(1− s0) +
δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βj
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
. (1)

The same logic follows for the period-t agent, its lifetime utility is the sum of a term that depends on
the period-t capital and a term that depends only on saving rates of periods t and after. We write
it compactly as

U(kt, st, st+1, . . .)︸ ︷︷ ︸
total payoff

=
α(1− αβ + δαβ)

1− αβ
log kt︸ ︷︷ ︸

capital payoff

+V (st, st+1, . . .)︸ ︷︷ ︸
action payoff

. (2)

Two relevant implications of separability are that, as of period t, the relative preferences over a
sequence of saving rates {st, st+1, . . .} are independent of the initial level of capital, and also the set
of feasible sequences is the same no matter what initial capital is.10

Before we discuss our proposed notion of equilibrium, we first characterize the allocations implied
by some commonly used equilibrium concepts, including the Ramsey outcome, the (differentiable)
Markov equilibrium,11 and the best allocation supported by a constant saving rate.

Ramsey outcome The assumption that the period-0 agent is able to commit to a particular
sequence of saving rates {sτ}∞τ=0 chosen at time 0, gives us a useful benchmark. The problem is

max
{st}∞t=0

u(c0) + δ
∞∑
t=1

βt u (ct) ,

subject to kt+1 = st k
α
t , ct = (1− st) kαt , k0 given.

The solution to the Ramsey problem can be summarized as

st =

sR0 = αδβ
1−αβ+δαβ , t = 0,

sR = αβ, t > 0.

The initial agent discounts period 1 at a higher rate than future periods, so she chooses a lower
saving rate in period 0 than in the future, sR0 < αβ.

10While this example satisfies additive separability, weak separability is sufficient for our results. When the production
function is linear in capital, as is the case for an individual who takes the interest rate as given, separability holds for
all CRRA utility functions.

11More precisely, we look at the Markov equilibrium that is the limit of finite economies. See Krusell and Smith (2003)
for details of the trigger-strategy equilibria that can be represented via non-differentiable Markov perfect equilibrium.
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Markov equilibrium Another useful equilibrium concept is the Markov equilibrium. Its implied
allocation satisfies a generalized Euler equation (GEE). Let g(k) denote the policy function for
tomorrow’s capital k′, the GEE is

uc(f(k)− g(k)) = β uc

(
f [g(k)]− g[g(k)]

)[
δfk[g(k)] + (1− δ) gk[g(k)]

]
,

which yields a closed form solution for the policy function, g(k) = αδβ
1−αβ+δαβk

α, and a constant saving
rate

sM =
αδβ

1− αβ + δαβ
. (3)

Note that the saving rate in the Markov equilibrium is the same as the first period’s saving rate in
the Ramsey outcome, and sM < αβ. Note also that this saving rate is independent of the level of
capital: hence, the current player cannot influence the future saving rates, and makes a choice taking
those future rates as given. This is a general consequence of separability.

Best constant savings rate The Markov equilibrium features a particular constant saving rate,
but it may not yield the best payoff compared with other constant saving rates. Suppose that agents
are restricted to choose a constant saving rate for themselves and for all future agents; then, the best
constant saving rate solves

max
s

u(c0) + δ
∞∑
t=1

βtu (ct)

subject to kt+1 = s kαt , ct = (1− s) kαt , k0 given.

The solution to this problem is given by

sB =
δαβ

(1− β + δβ)(1− αβ) + δαβ
, (4)

and it satisfies sB ∈ (sM , sR) when δ ∈ (0, 1).

Towards Organizational Equilibrium Separability makes it easy to discuss the properties of
the allocations implied by these equilibrium concepts, and in particular whether any time-t agent
would prefer the sequence of savings rates given to another agent. We next explore how the two
criteria mentioned at the beginning of this section relate to the previous equilibrium concepts.

In the Ramsey outcome, the initial agent achieves a higher action payoff than any subsequent agent,
as V (sM , sR, sR, . . . ) is higher than V (sR, sR, sR, . . . ) and it is feasible for future agents as well. If
a time-t agent were to be able to become the initial agent, it would always do so, violating the first
criterion in our wish list. Our notion of organizational equilibrium excludes such an allocation as
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an equilibrium. A similar property would hold in the best subgame perfect equilibrium that can
be supported under the threat of reverting to Markov after a deviation; there too the initial agent
receives a more favorable treatment than subsequent agents, in the sense that its action payoff is
higher.

The best constant saving rate sB does satisfy our first criterion for an organizational equilibrium,
that no agent can do better by switching to an earlier allocation. However, it does not satisfy the
second, since V (sM , sB, sB, · · · ) > V (sB, sB, · · · ): the initial agent would rather choose sM and let
every subsequent agent choose sB, which amounts to sitting out and letting the equilibrium unfold
from the following period.

The Markov equilibrium avoids these issues. First, the Markov equilibrium does not favor the initial
agent, as the equilibrium path features a constant saving rate and the action payoff is the same for
all agents. Second, when staying out and letting equilibrium unfold the following period, the current
agent will choose the Markov saving rate itself, which yields exactly the same payoff. The question
is then whether anything else can be better than the Markov equilibrium and still satisfy the two
criteria.

The answer is yes. Putting the two criteria together, the organizational equilibrium points to an
allocation implied by a sequence of saving rates {s∗0, s∗1, s∗2, · · · }, such that

V = V (s∗t , s
∗
t+1, s

∗
t+2, · · · ) for all t, (5)

and also
V (s∗t , s

∗
t+1, s

∗
t+2, · · · ) ≥ V (sM , s∗0, s

∗
1, s
∗
2, · · · ). (6)

To see how we obtain condition (5), recall that the no-restarting condition requires that

V (s∗t , s
∗
t+1, s

∗
t+2, · · · ) ≤ V (s∗t+1, s

∗
t+2, s

∗
t+3, · · · ) for all t,

as period t+ 1 agent can become period-t agent. Meanwhile, if the sequence did not yield a constant
value, agent 0 could improve by skipping the periods up to the point at which the value becomes
constant.12 We will show in Section 3.4 that the maximum constant value of V that can be attained
is given by V (sB, sB, sB, · · · ), and the equilibrium path of saving rates increases gradually such
that choosing sM followed by {s∗}∞t=0 does not yield a higher utility than V . On the other hand,
condition (6) makes sure the no-delay condition is satisfied by construction. In fact, it also implies

12Our compactness assumptions ensure that, if such a sequence remained strictly increasing even as time goes to
infinity, then there would exist a sequence of constant value attaining the limit value (higher than all of the elements
of the strictly increasing sequence).
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that restarting from s0 amounts to a sufficient (although often stronger than necessary) punishment
to deter any deviation along the transition.

To construct the sequence of saving rates s∗t , recall that in our example economy, the action payoff
function V (·) is given by equation (1). Together with condition (5), it implies a recursive relationship
between s∗t+1 and s∗t

β(1− δ) log(1− s∗t+1) =
δαβ

1− αβ
log s∗t + log(1− s∗t )− (1− β)V , (7)

Following this relationship, there are a continuum of paths that converge to the stationary point,
which is given by the best constant saving rate sB. By setting the starting point s∗0 sufficiently low,
the initial agent will not find it attractive to stay out and wait for the equilibrium to unfold. An
equilibrium path has the following properties: first, it displays a gradual transition from a relatively
low saving rate to a high saving rate sB, as if a good reputation is built over time. Second, along the
transition path, the action payoff stays the same as that implied by the best constant saving rate,
and is larger than that in the Markov equilibrium.

In the next section, we formalize these notions as the result of a game-theoretical refinement, and
we show that the features of this motivating example are general properties of an organizational
equilibrium.

3 Organizational Equilibrium

This section contains the core of our equilibrium analysis. After we describe the economic environ-
ment (preferences and technology), we setup a standard game in which there is a specific period 0
and the entire history is recorded. In such a game, we define the organizational equilibrium as a
subgame perfect equilibrium with a particular refinement. In Section 3.2, we provide an alternative
representation of the same economic environment as a different game with incomplete information
that eliminates the special role of period 0. In this game, we show that the no-delay condition central
to the notion of organizational equilibrium is a requirement for a sequential equilibrium rather than
a refinement. In Section 3.3, we prove the general properties of an organizational equilibrium and a
recursive method that directly constructs the equilibrium outcome.

Consider a generic environment of sequential decision makers (typically those that have a time-
consistency problem) where there is a physical state variable k ∈ K. Specifically, given the current
level of k, the agent making a decision will choose an action a from a set A. The state evolves
according to kt+1 = F (kt, at). Preferences for an agent making decisions in period t are given by
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U(kt, at, at+1, at+2, . . .). The first assumption is that functions U and F are independent of calendar
time, which allows meaningful welfare comparisons across decision makers.

We restrict the environments that we study to those in which the utility is weakly separable between
the state and the sequence of actions, such that the preference ordering over sequences is independent
of the initial state. Formally:

Assumption 1. 1. At any point in time t, the set of feasible actions A is independent of the state
kt;

2. U is weakly separable in k and in {as}∞s=t, i.e., there exist functions v : K × R → R and
V : A∞ → R such that

U(k, at, at+1, at+2, . . .) ≡ v(k, V (at, at+1, at+2, . . .)). (8)

and such that v is strictly increasing in its second argument.

Sometimes the original problem does not satisfy Assumption 1, but it is possible to re-scale actions
in such a way that it does.13 As an example, the original specification of the saving problem with
quasi-geometric discounting does not satisfy Assumption 1 if we define the action to be consump-
tion: the feasible set of consumption levels depends on initial capital.14 Formally, suppose that
the set of feasible actions at any capital level k is Ã(k) ⊆ Ã and that preferences are given by
Ũ(kt, ãt, ãt+1, ãt+2, . . .). Our construction still applies as long as it is possible to find a set of actions
A and a function γ such that ã = γ(a, k) and that Assumption 1 holds for A, where

U(k, at, at+1, at+2, . . .) ≡ Ũ(k, ãt, ãt+1, ãt+2, . . .),

and where for t ≥ 0, ãt is computed recursively as

ãt = γ(at, kt),

kt+1 = F (kt, ãt).
(9)

13Notice also that any one-to-one transformation of a will preserve weak separability, so the action space is only
defined up to such transformations. As an example, for the case analyzed in Section 2, any monotone transformation
of the saving rate would be an equally valid action, yielding the same equilibrium outcomes.

14Note that weak separability automatically fails if certain actions are only feasible for some levels of capital, since,
holding actions fixed, the left-hand side of (8) would then be well defined for some values of k and not for others.
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3.1 The Standard Game

The general setup that we have described is typically modeled as the following game. There is an
infinity of players indexed by the time at which they act, {0, 1, ...}, each of whom has preferences
given by (8). At each time t, the history of play is given by ht := (a0, a1, ...at−1), with h0 := ∅. A
strategy σt for player t is a mapping from the set of time-t histories, Ht, to the set of actions A. A
strategy profile is a sequence of strategies, one for each player: σ := (σ0, σ1, ...). As usual, it is also
convenient to define a continuation strategy after history ht, σ|ht , represented by the restriction of
(σt, σt+1, ...) to the histories following ht. From any history ht, a strategy profile induces a sequence
of future actions, which we denote through the following short-hand notation:

at+1,σ|ht := σt+1(h
t, σ(ht)), at+s,σ|ht := σt+s(h

t, at+1,σ|ht , ..., at+s−1,σ|ht ).

Starting from the set of subgame-perfect equilibria of this game, we limit the equilibria in our analysis
by first imposing the following refinements:

Requirement 1 (State Independence). We limit attention to equilibria in which the strategies fol-
lowed by all players are independent of the state k.

Requirement 2 (No-restarting and optimality). We limit attention to equilibria such that:

• they are symmetric, in that the action payoff

V (at+1,σ|ht , at+2,σ|ht , ...)

is the same after any history of play;

• No other symmetric state-independent equilibrium exists that attains a higher payoff.

In the absence of a state variable (when preferences are independent of k), Requirement R2 cor-
responds to Kocherlakota’s (1996) definition of reconsideration-proof equilibrium. In particular, no
restarting is the natural adaptation of Kocherlakota’s symmetry requirement: factoring out the effect
of the state variable, the utility that an agent receives from its actions and those of its successors is
independent of the past history of play.

As a first step, we extend the notion of reconsideration proofness to dynamic games, rather than
purely repeated games. In the presence of a state variable, we assume that players coordinate
on strategies that only depend on the history of play ht and not on the physical state. Weak
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separability plays an important role in this selection criterion: it ensures that the same actions can
indeed be played independently of the current value of the state, and that each player’s preferences
over current and future actions are independent of the state. This ensures that, if σ|ht is a subgame-
perfect equilibrium for a history that attains some level of the state k̄, it is also a subgame-perfect
equilibrium for any other history, even though the initial level of capital may be different from k̄. In
this case, an organizational equilibrium imposes symmetry only in that the payoff of the subutility
V is independent of the history of play, but the payoff of each time-t player is still different across
histories which lead to different levels of the state. Intuitively, a different state implies a different
set of possible utility levels going forward, so we should expect it to affect payoffs in the subgames
going forward. However, this dependence of utility from the state takes a simple form under weak
separability, and there is a natural mapping across histories with different levels of capital: the same
sequences of actions are possible under any level of capital, and the preferences of player t over the
sequences from date t on are also represented by the subutility V , independent of kt. For this reason,
imposing reconsideration proofness on preferences represented by V alone is appealing.

It is useful to compare our notion to previous attempts at dealing with state variables in this context.
An extension of reconsideration proofness to environments with state variables was proposed by
Nozawa (2018). Nozawa requires weakly reconsideration-proof equilibria to be such that the equilibria
of all subgames share the same payoff function Ψ(k), which depends on the state; in the absence of
the state, this reduces to Kocherlakota’s (1996) symmetry requirement. A strong reconsideration-
proof equilibrium is then an equilibrium in which Ψ(k) is undominated by any other equilibrium
point by point. This is often too strong a requirement, and hence existence may fail.15 Our approach
avoids this problem because symmetry is defined by a single utility level V̄ , namely the action payoff
attained by each agent, rather than a function. This is possible because weak separability allows us
to extend this single level to the complete payoff (which remains a function of the state) by setting
it equal to v(k, V̄ ).

An alternative approach adopted in the past is revision proofness, which was introduced by Asheim
(1997) and made explicit as a game in Ales and Sleet (2014). In their papers, a larger class of credible
punishments is allowable. Specifically, under reconsideration proofness, if Σ is the set of equilibrium
strategies of the game, each player at any time t is allowed to coordinate current and future play
to its favorite element of Σ. Under revision proofness, player t’s coordination power is limited
because it is required to propose deviations from the equilibrium path of play that benefit all future
players. The resulting equilibrium set is much larger. For the case of quasi-geometric discounting
with linear preferences, Ales and Sleet (2014) show that all subgame-perfect paths better than the
Markov equilibrium are revision proof. In environments with state variables, a limitation of revision

15As an example, no reconsideration-proof equilibrium would exist in the example of Section 2.
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proofness is that it is unclear how a future player could “block” a revision proposal when it would
inherit a different state under the revision proposal and would thus not be able to continue with the
original strategy. Our notion of organizational equilibrium retains the unilateral aspect of deviations
from reconsideration proofness, but it relies on weak separability to define and impose symmetry
across different levels of capital.

Proposition 6 in Appendix A proves existence of an equilibrium satisfying Requirements 1 and 2
under the following technical assumption:

Assumption 2. 1. A is a convex compact subset of a locally convex topological linear space with
topology ρx.

2. V is quasiconcave over A∞.

3. V is continuous over A∞ with respect to the product topology ρ∞x .

There can be many such equilibria. In Section 2, Requirements 1 and 2 imply that saving rates must
satisfy the difference equation (7), but they do not provide an initial condition s0. Our next step is to
push our selection further, and capture the idea that time inconsistency is not overcome all at once
out of the blue, but rather that intertemporal cooperation takes time to build. If players coordinated
to start from a high degree of cooperation from the beginning, there might be an incentive for a
player to defect and hope that such a coordination takes place in the future. We approach this
reasoning in a formal way by altering the game in Section 3.2, but for now we simply add as a third
requirement that the first player has no incentive to deviate from the equilibrium path if the threat
is that the same equilibrium will be played starting from the next period, as if the initial period had
not taken place. Formally:

Requirement 3 (No Delay). Let σ be a subgame-perfect equilibrium strategy profile satisfying Re-
quirements 1 and 2. Then, for each possible action a ∈ A,

V (a0,σ, a1,σ, a2,σ, ...) ≥ V (a, a0,σ, a1,σ, ...).

Our no-delay condition is related to Prescott and Rios-Rull (2005), although the form it takes here is
different. In their overlapping-generations economy, there is an implicit form of no-delay motivated by
the presence of an initial elderly cohort which is assumed to have played their best one-shot response
before time zero. Here, we argue that explicitly imposing no-delay becomes desirable because it
ensures that the coordination that gives rise to the initial equilibrium is not as generous as to tempt
the first player to sit it out, play its best one-shot action, and count on the same coordinating
mechanism to arise in the future.
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We are now ready to define an organizational equilibrium:

Definition 1. An organizational equilibrium is the outcome of any subgame-perfect equilibrium of
the game described above that satisfies Requirements 1, 2, and 3.

We choose to define an organizational equilibrium as the outcome of an equilibrium in a game-
theoretic sense. In Proposition 3 and Corollary 1 below, we provide a way of characterizing this
outcome directly, without describing the underlying strategies that support it. This makes it easier
to apply our notion in a macroeconomic context: just as a competitive equilibrium can be defined
as a single path, without reference to the underlying strategies, an organizational equilibrium also
involves only the description of the path. At the same time, our paper provides the full strategic
foundations that support such an equilibrium path, and the interested reader can then apply our
proofs to construct them, if desired.

In order to prove existence of an organizational equilibrium, we use the following additional sufficient
condition:

Assumption 3. V is weakly separable in at and {as}∞s=t+1, i.e., there exist functions Ṽ : A×R→ R

and V̂ : A∞ → R such that, for all sequences (at, at+1, at+2, . . .) ∈ A∞,

V (at, at+1, at+2, ...) = Ṽ (at, V̂ (at+1, at+2, . . .)), (10)

with Ṽ strictly increasing in its second argument.

Assumption 3 implies that a player’s preference ordering over the actions of future players is inde-
pendent of its own choice: what player 0 views as “desirable” or “undesirable” future actions does
not depend on its own choice. This is only a sufficient and not a necessary condition for existence
of an organizational equilibrium; Appendix C shows an example where this Assumption fails and
an organizational equilibrium can nonetheless be found. Assumption 3 implies that there is a clear
way of defining what “cooperation” means, because the preferences of past players over the actions of
the current and future players are not tied to the choices that those past players made. This makes
our Requirement 3 particularly salient. In our hyperbolic discounting, past players would like future
players to adopt a saving rate which is above the Markovian saving rate and closer to the long-run
Ramsey outcome, and this is independent of what they themselves chose. It is in this context that
the vague notion of “gradual development of cooperation” can be given formal meaning.

Proposition 1. Under Assumptions 1, 2 and 3, an organizational equilibrium exists.

Proof. See Appendix A
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The proof of Proposition 1 supports the equilibrium outcome by relying on a trigger strategy that
reverts to restarting the path of play from the equilibrium action a0 following any deviation, but
in most applications (including all of those that we discuss below) this punishment is unnecessarily
harsh. As an example, suppose that player t deviates (being the first to deviate) and chooses as,
the equilibrium action that player s < t took. A (weakly) sufficient deterrent is for future players
to continue by playing as+1, as+2, .... We find it appealing that the punishment can be often made
proportional to the size of the deviation.

While generalizing our equilibrium notion to a stochastic environment is beyond the goal of our
current paper, we would regard exploiting this feature as an important ingredient in such a general-
ization. Intuitively, suppose that players are subject to impatience shocks, that lead them sometimes
to backtrack on the way to intertemporal cooperation. As a concrete example, using our international
trade application of Section 5, suppose that a political shock leads a government to reintroduce some
trade barriers. Rather than restarting from square one, it is natural to assume that future players
would react by resuming the slow march towards cooperation from this new, lower level.

3.2 An Alternative Game where Period 0 is not Special

We wish to go one step further and formalize the notion that intertemporal cooperation is fostered by
the emergence of “good institutions,” or “good norms.” To do so, we build upon the game above, but
we modify it so as to make sharper predictions about the start of play. In this alternative game, every
agent has the ability to erase history and become the agent in period “minus one,” effectively letting
the agent in the following period become the period zero agent. This game is another representation
of environments with time consistency problems, that are our objects of interest, provided that we
are willing to entertain that agents can actually erase history, or at least, provide a clean separation
from their past.

More generally, our game pins down what do we mean by “the first period,” an issue generally
ignored in the literature. We accomplish that by giving any agent the option to either go along with
whatever time index it has from the past or to become the (or better, a) time zero agent. This
approach has a recursive flavor in the sense there is nothing special to the timing of birth of any
particular agent and we formalize it below. We think that it has various attractive features and an
unattractive one: it allows us to use the powerful tools of dynamic games, while at the same time
preventing any specific agent to be the special time-zero agent; it provides a natural justification for
the no-delay condition embedded in Requirement 3, which emerges naturally as a requirement for
a sequential equilibrium; finally, it provides a rationale for the unorthodox name (organizational) of
the equilibrium concept, since an organization consists of an ongoing, uninterrupted set of agents
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that choose to go along with a plan rather than set up their own organization. The unattractive
feature of our interpretation of the initial period is that it requires the make-believe assumption
that subsequent agents can forget the previous history whenever one of them chooses to become the
type-zero agent. Such assumption may not sound appealing in a literal interpretation of the problem
of an agent with time-inconsistent preferences, but it is more so when we think of collections of
governments and their possible explicit choices of breaking with the past, claiming that they do not
share anything with previous governments, which we take as becoming agent 0 or, simply, restarting
history.

We choose to present this alternative game in a separate section because this interpretation or design
of the strategic interaction is not strictly necessary to develop our equilibrium notion, but it makes
the no-delay condition not yet one more refinement of subgame perfection, but a necessary property
of a sequential equilibrium.

Formally, the game of Section 3.1 is modified as follows. We now assume that the actions of past
players remain unobservable to the current player until an “organization” is set up to record past
play. The opportunity to set up an organization arrives at a stochastic point in time t, where the
probability distribution over the time of arrival is unrestricted, except that it is assumed to have full
support over N; the precise time is unobserved by the players, who can only know whether setting
up an organization is possible when they are called to play. In sum, let t̂ be the time at which
the opportunity to set up record keeping emerges. For t < t̂, players do not observe past play and
choose an action at that cannot be conditioned on (a0, ..., at−1).16 In each subsequent period t ≥ t̂,
if no record-keeping organization is in place, player t can start one, so that player t+ 1 will be able
to condition its actions on player t’s choice at. This choice is taken without knowing whether the
opportunity was available in the past, or whether it newly arrived in period t. If record-keeping has
been in place since a period t̃ ∈ [t̂, t), player t can choose to continue the current organization, so
that player t+ 1 can condition its actions on (at̃, ..., at), or it can start a new organization, in which
case only at is known to player t+1, or it can discontinue the current organization without replacing
it, in which case player t+ 1 cannot condition its actions on any of the past actions (a0, ..., at−1).17

With the limitations on record-keeping described above, the game unfold otherwise as in Section 3.1,
with each player at time t choosing an action at ∈ A (after making a record-keeping choice, if a
choice is available). The preferences and the evolution of the state are the same as in Section 3.1.
To quickly distinguish between the two games, we will from now on refer to the game of Section 3.1

16We continue to only consider equilibria in which strategies are independent of the state variable, which rules out
inferring past play through this indirect channel.

17Even in this case, player t does not know if the opportunity to set up an organization first appeared in period t̃, or
was available in earlier periods but was not taken up, or it was taken up but discontinued by earlier players.
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as the game where record-keeping starts at time 0, and the game just described here as the game
where history can be hidden. The introduction of incomplete information requires switching from
considering subgame-perfect equilibria to sequential equilibria.18 We relegate the notation defining
histories, information sets, and strategies to Appendix B.

Since this new game involves uncertainty, in order to find equilibria where strategies are independent
of the state, we need to strengthen Assumption 1:

Assumption 4. 1. At any point in time t, the set of feasible actions A is independent of the state
kt;

2. There exist functions v̄ : K ×R++, ¯̄v : K ×R, and V : A∞ → R, such that

U(k, at, at+1, at+2, . . .) ≡ v̄(k)V (at, at+1, at+2, . . .)) + ¯̄v(k). (11)

This assumption is satisfied throughout all of our examples.

Proposition 2. Consider a state-independent sequential equilibrium that satisfies Requirement 2

from period t̂ on. Such an equilibrium exists under Assumptions 2 and 4. Let t̂ be the realization
of the (random) first time in which record keeping is possible, and let (at̂, at̂+1, at̂+2, ...) be the path
implied by the equilibrium, conditional on t̂. Then (at̂, at̂+1, at̂+2, ...) is an organizational equilibrium.

Proof. See Appendix B.

Remarks on no-delay and no-restarting conditions Notice that we do not redefine an or-
ganizational equilibrium in this section; rather, we prove that the same definition that we used in
Section 3.1 also describes the equilibrium path of this new game from the point at which record
keeping becomes possible. The no-delay condition is now a requirement for a sequential equilibrium.
Suppose it were violated. Then, the player that moves at the first instance in which record keeping
is possible would have an incentive to “pass the buck,” pretend that nothing has happened, let next
period’s agent think that she is the first one to have access to record keeping, and play the best
response to that. In their own way, both the no-restarting condition and the no-delay condition are
designed to downplay the special role that period 0 has under time inconsistency. No-restarting looks
forward and formalizes the notion that the time-0 player cannot impose an equilibrium that treats

18Note however that we do not need to keep track of beliefs within an information set. This is for two reasons: first,
no future player will be able to distinguish between histories that are in the same information set at time t, which
means that their actions will be the same independently of the specific node within the current information set; second,
player t’s payoff conditional on current and future actions and on the state is also independent of the specific node
within the information set.
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herself more favorably than the agents that follow. No-delay looks backward instead: it captures
the idea that there is no special period 0 in which the world starts, but rather there always is a
history that precedes any particular policy that we wish to analyze. In this context, a player at a
given point in time will only find it optimal to start a process (or an organization) to overcome time
inconsistency only if it is (weakly) in her best interest not to hope that the next player will do so
instead.

3.3 Equilibrium Properties

We are interested in macroeconomic applications of the notion of organizational equilibrium. For
these applications, keeping track of strategies is cumbersome. It would be desirable to characterize
an organizational equilibrium directly in terms of the equilibrium sequence, without fully specifying
the supporting strategies; this is similar to the way in which competitive equilibria are defined in
macroeconomic models, which is also purely in terms of sequences of actions (and prices). In this
section, we develop sufficient conditions that allow us to do this, and that provide further properties
of the equilibrium allocation. Appendix C discusses the role of these conditions in greater details and
shows how to apply similar ideas to characterize organizational equilibria in examples where these
specific assumptions fail.

The following proposition proved in Appendix D provides a first step:

Proposition 3. Let Assumption 1 hold. A sequence {āt}∞t=0 that satisfies the following properties is
an organizational equilibrium:

1. No-restarting:
V (āt, āt+1, āt+2, ...) = V̄ ∀t ≥ 0;

2. Optimality: No other sequence satisfying no-restarting achieves a higher constant value;

3. No-delay:
V (ā0, ā1, ā2, ...) ≥ max

a
V (a, ā0, ā1, ...).

Furthermore, if a sequence satisfying the three properties above exists, then all the organizational
equilibria satisfy the same conditions.

When a sequence that satisfies the three properties of Proposition 3 can be found, we have a way
of characterizing organizational equilibria directly in terms of sequences. We are also interested in
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establishing the converse: specifically, that any organizational equilibrium is a sequence that satisfies
the three properties of Proposition 3 (or, equivalently, that a sequence satisfying the 3 properties
exists). To do so, we require further assumptions. The same assumptions are also instrumental in
establishing that some of the properties that we observed in the simple example of Section 2 are true
more generally.

In Section 3.1, we introduced some structure on the action payoff function V through Assumption 3
as a sufficient condition for the existence of an organizational equilibrium. Assumption 3 implies
that the current action payoff is determined by the current action and a scalar sufficient statistic for
the sequence of future actions. Our next assumption imposes a recursive structure on this sufficient
statistic:

Assumption 5. Let V̂ be defined as in Assumption 3. There exists a function W : A × R → R,
increasing in the second argument, such that, given any sequence {as}∞s=t ∈ A∞,

V̂ (at, at+1, at+2, . . .) ≡W
(
at, V̂ (at+1, at+2, . . .)

)
. (12)

This assumption of course holds in the example of Section 2 and in many other applications of eco-
nomic interest.19 As is often the case, a recursive structure is instrumental in constructing equilibria
in infinite-horizon economies in which backward induction cannot be applied. Note however that the
recursion applies only on preferences about future actions: at enjoys a special role in the preferences
of player t, which is the essence of the time-consistency problem.

We then obtain (again proved in Appendix D):

Proposition 4. Under Assumptions 2, 3, and 5, there exists an organizational equilibrium {at}∞t=0

which is recursive in the value V̂ (at, at+1, at+2, . . .): that is, there exists a function g : R → A×R
such that (at, vt+1) = g(vt), and vt = V̂ (at, at+1, at+2, . . .) for all t = 0, 1, ....

Proposition 4 uses values as a state variable in ways similar to Abreu et al. (1986, 1990) (APS).
However, as the proof shows, constructing the set of possible values is considerably more involved
than in the case of APS. In APS, the set of equilibrium values can be obtained by starting from a

19The key difference between Assumption 3 and Assumption 5 is that the same function V̂ appears both on the
left and right-hand side in Assumption 5. The function V represents the utility that an agent at t receives from a
sequence of actions starting at t. The function V̂ represents the continuation utility that an agent at t derives from a
sequence of actions starting at t + 1. Assumption 5 allows us to employ recursive methods. When 5 fails, computing
an organizational equilibrium may be more challenging, but often there are alternative ways of making the problem
recursive. As an example, Appendix C computes an organizational equilibrium for a planner that aggregates the
preferences of agents with heterogeneous discount factors, as in Jackson and Yariv (2014, 2015). While Assumption 5
fails in that context, an alternative recursive representation is possible, and the nature of the equilibrium is similar.
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large (convex) set of possible continuation values, and iterating backward through a monotonically
shrinking sequence of sets until convergence. In our case, the symmetry property of organizational
equilibria imposes that continuation equilibria must share the same value as the equilibrium of
the game from time 0. This equality constraint breaks the APS procedure and requires a more
complicated argument.

The following proposition and corollaries provide the main characterization of an organizational
equilibrium as we use it throughout all of our applications.

Proposition 5. Under Assumptions 2, 3, and 5, the following properties hold:

1. The action payoff of an organizational equilibrium coincides with the maximum value that
V (a, a, a, ...) can attain under a constant action.

2. The payoff of an organizational equilibrium is weakly below that of the Ramsey outcome and
weakly better than that of the best (state-independent) Markov equilibrium. The inequality is
strict, except except in the case in which the Ramsey outcome is attained by a constant allocation
as in a Markov equilibrium.

3. V̂ (at, at+1, at+2, . . .) is increasing over time for any organizational equilibrium, and it converges
to the value associated with the constant action profile that maximizes V (a, a, a, ...).

4. If V̂ is a strictly quasiconcave function and the steady state that maximizes V (a, a, a, ...) is not
a Markov equilibrium, then the convergence is not immediate: the initial value V̂ (a0, a1, a2, . . .)

is strictly below V̂ (a, a, a, . . .).

Corollary 1. Under Assumptions 2, 3, and 5, there exists a sequence {āt}∞t=0 that satisfies Properties
1,2, and 3 of Proposition 3.

Part 1 of Proposition 5 implies that an organizational equilibrium attains the same payoff as the allo-
cation associated with the best constant action. In the presence of time inconsistency, this constant
action necessarily trades off the short run costs and long-run benefits of deviating from a Markov
equilibrium; Part 2 accordingly shows that an organizational equilibrium always has an intermediate
payoff between the Ramsey outcome and the best Markov equilibrium. The three notions yield the
same payoff only when the Ramsey outcome can be attained by a Markov equilibrium: in this case,
there is no time consistency problem, because player t has an incentive to choose the Ramsey allo-
cation if it believes that future players will also do the same. Whenever time consistency has bite,
an organizational equilibrium falls short of the Ramsey outcome. Part 3 and 4 in turn shows that
convergence takes time. Whether this is interpreted as a gradual build-up of trust or a willingness
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by the current institutions to own up to the actions of previous decision makers, this is at the heart
of our notion of organizational equilibrium.

Finally, Corollary 1 shows that the procedure we used to compute organizational equilibria in Sec-
tion 2 applies more generally. Specifically, we first compute a constant action profile that maximizes
V (a, a, a, ...): this is what would be chosen by the decision maker at time 0 if future players were
committed to take the same action. This maximization yields a value V ∗, which must remain con-
stant along the path, i.e., V (at, at+1, at+2, ...) = V ∗. The proof of Proposition 5 shows how to exploit
the recursive structure implied by Assumption 5 to construct other sequences that attain the value
V ∗, and how to pick the initial action a0; the resulting sequence converges to the constant action
profile (a, a, a, ...), but not immediately (except for the degenerate case of no time-inconsistency).

3.4 Application to the Growth Model

We now apply the results that we derived for a generic case to the specific application of Section 2.
By inspecting Equations 1 and 2, we can verify that our preferences satisfy Assumptions 1, 3, 4,
and 5. Assumption 2 is satisfied if we pick an arbitrarily small ε > 0 and we impose a minimum
saving rate ε and a maximum saving rate 1 − ε.20 Following Proposition 3 and Corollary 1, we
compute an organizational equilibrium by directly looking at sequences that satisfy the properties
of no-restarting, optimality, and no-delay of Proposition 3.

First, in order to attain a constant action value, as implied by the no-delay condition, the sequence of
saving rates must satisfy the difference equation (7). From Proposition 4, we know that the solution
has a recursive structure. In this case, instead of writing the recursion in terms of continuation
values, it is more convenient to write it directly in terms of the saving rates that will be undertaken.
Accordingly, using (7), we define

q(s;V ) := 1− exp

{
−(1− β)V + δαβ

1−αβ log s+ log(1− s)
β(1− δ)

}
, (13)

so that equation (7) can be rewritten as st+1 = q(st;V ). The blue lines and the red line in Figure 1
represent this difference equation under different values for V .

The optimality property is satisfied by the solution that achieves the highest possible action payoff;
20We could prove that these bounds do not affect our results when ε is sufficiently close to zero. Intuitively, while

household preferences are not time consistent, the degree of time inconsistency is limited, so that the player moving at
time t would not want to consume all of its endowment and at the same time it would not want future players to save
all of theirs. We omit a formal analysis of these bounds for brevity.
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Figure 1: Evolution of the Saving Rate for Sequences that Attain a Constant Value

by Proposition 5 this is the payoff attained by the action s that maximizes V (s, s, s, ...), which is
given by (4). This is represented by the red line in Figure 1 and is associated with a value that we
define V ∗.21

Even after we pin down V = V ∗, the difference equation (7) admits a continuum of solutions,
indexed by the initial condition. From the perspective of the agent who makes the proposal, all
of these sequences of saving rates yield the same payoff; however, they yield different payoffs from
the perspective of future agents. As an example, consider the following two proposals: the first
one is st = sB for all t, and the second one starts from s0 = sM and subsequently follows a
sequence dictated by the difference equation (7). Both of these sequences imply the same action
payoff V (s0, s1, . . .) = V (sB, sB, . . .) = V ∗ for the agent who makes the proposal, as a higher saving
rate today is rewarded with higher saving rates in the future. The no-delay condition restricts the
range of initial conditions that correspond to an organizational equilibrium; s0 must be such that
V (sM , s0, s1, . . .) ≤ V ∗, so that the initial agent would not gain from waiting for the sequence to
start in the next period.22 To guarantee the no-delay condition is satisfied, the sequence of saving

21For points to the right of the steady-state saving rate, the difference equation implies a sequence of saving rates
converging to 1. This would violate the upper bound 1 − ε, so eventually no solution would be possible. Even if we
ignore the bound, this solution violates the transversality condition and yields infinitely negative utility rather than
V ∗. When a higher value than V ∗ is used in the difference equation, there is no fixed point and all the solutions of the
difference equation violate the transversality condition.

22In general, the no-delay condition requires maxs V (s, s0, s1, ...) ≤ V (s0, s1, ...). The fact that this maximum is
always attained by sM independent of the sequence is due to the specific functional-form assumptions of our example.
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rates has to start with a low enough point to prevent the initial agent from sitting out; in Figure 1,
this is no higher than the point s0, which corresponds to q(sM ;V ∗). This condition excludes the
possibility of jumping to the steady-state saving rate immediately, and a gradual transition has to
take place.

While there are many organizational equilibria, all of which give the same utility to the first gener-
ation, the equilibrium in which

s0 = q
(
sM ;V ∗

)
yields the highest total utility for the subsequent generation by delivering the most capital. We
select this one because it is the natural outcome if there is an arbitrarily small amount of altruism
involved.23

In the organizational equilibrium, time inconsistency is gradually overcome through time: at least
from period 1 on, the saving rate exceeds that of the Markov equilibrium, and a virtuous cycle is
started, with a monotonic increase which converges to sB. Initial saving is limited by the temptation
to let the next generation start the virtuous cycle. This temptation diminishes in subsequent periods,
since restarting the virtuous cycle from scratch implies giving up on the accumulated effect of previous
increases in st. Note that sB is below the long-term savings rate of the Ramsey outcome, no matter
how close to 1 δ is (as long as it is strictly less than 1): while the equilibrium path converges to the
Ramsey outcome as δ → 1, it never coincides with it. This is in contrast with the best subgame-
perfect equilibrium, which (by the folk theorem) coincides with the Ramsey outcome for all values
of β sufficiently close to 1.

In this example, we can further establish the following properties of the converging dynamics.

Corollary 2. The slope of the transition function st+1 = q (st;V
∗) is positive when st ∈ (sM , sB],

equals to 0 when s = sM , and equals to 1 when s = sB.

This result implies that not only the saving rate is monotonically converging to sB, but also the
speed of the convergence slows down when approaching the steady state. The transition begins
with a comparatively low savings rate and will require a considerable amount of time to ultimately
stabilize.

Comparison with other equilibria We now compare the properties of the sequence of capital
stocks and the lifetime utilities in the organizational equilibrium with those in the Ramsey outcome

23For the same reason, a fortiori we neglect saving rates below the Markov saving rate. Technically, such saving
rates would also represent organizational equilibria, up to a lower bound which is the second solution to the equation
V (sM , s0, s1, . . .) = V ∗, with the sequence (s0, s1, ...) satisfying (7).
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and the Markov equilibrium.24

We first turn to the transition paths of different equilibria. We assume that the initial capital stock
is the steady state capital stock in the Markov equilibrium, i.e., k0 = kM . The first row of Figure 2
displays the transition paths for the saving rate st and capital kt. In the Markov equilibrium, the
capital stock remains unchanged at the steady-state level that we assumed as a starting point. The
Ramsey outcome features the same saving rate as the Markov equilibrium in the first period, so
that the capital stock remains the same at the beginning of the second period. From the second
period onwards, the saving rate increases to sR permanently. The sequence of saving rates in the
organizational equilibrium is induced by the transition function st+1 = q(st;V

∗). Particularly, the
saving rate in the first period is s0 = q(sM ;V ∗) > sM , and the capital is initially higher than in
the Ramsey allocation. Over time, the saving rates increase gradually and converge to s∗ < sR.
Asymptotically, capital in the organizational equilibrium settles between the Ramsey outcome and
the Markov equilibrium.

Now we turn to the welfare comparison. Given a particular sequence of saving rates {sτ}∞τ=0, based
on the analysis in the last section, the lifetime utility for generation t can be written as

Ut(kt, {sτ}∞τ=t) =
α(1− αβ + δαβ)

1− αβ
log kt + Vt.

The total payoff Ut and the action payoff Vt are depicted in the second row of Figure 2. The total
payoff in the Markov equilibrium is the lowest during the entire transition, which is the result of
both the lowest capital stock and action payoff. The comparison between the Ramsey outcome and
the organizational equilibrium is more subtle. In the first period, the total payoff in the Ramsey
outcome is higher than that in the organizational equilibrium: this has to happen by definition, since
the Ramsey outcome maximizes the total payoff from the perspective of period 0. In the following
period, the comparison reverses, and the total payoff in the organizational equilibrium is actually
higher than the Ramsey outcome. This happens both because the initial generation accumulates
additional capital, and because the organizational equilibrium does not impose as high a saving rate,
allowing for some indulgence for the short-run impatience that arises in the second period. Our
notion of organizational equilibrium treats initial capital as a bygone, factoring it out of the payoff
that is relevant in computing the equilibrium itself; however, it captures the notion that the initial
agent is not privileged compared to future decision makers and cannot impose on them sacrifices
that it has not undertaken. For this reason, when we focus on Vt, an organizational equilibrium
redistributes from the initial agent to all future decision makers. When comparing the total payoff,
after period 0, early decision makers benefit both from a higher capital level and a higher action

24For the numerical computation, we use the following parameter values: α = 0.4, β = 0.96, and δ = 0.9.
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Figure 2: Transition Paths in Various Equilibria

payoff, while eventually capital falls below the Ramsey outcome and late generations lose from this.

3.5 Equilibrium of Approximating Economies

The assumption of weakly separable utility is restrictive. In this section, we propose a strategy to
study organizational equilibrium for economies where this assumption is not satisfied. Our approach
is to look at an economy that is weakly separable and similar in a particular metric to the original
one and then study organizational equilibrium in this alternative economy. Two considerations make
this a fruitful approach. One is that the approximation, while being first order, is not necessarily
linear, but takes any functional form of our choice. The other is that we can solve with arbitrary
accuracy using standard methods for the Markov and Ramsey allocations of the original economy.
This allows us to explore, if needed, what particular functional forms of the approximating economy
works best in the sense of yielding sufficiently close Markov and Ramsey allocations to those of the
original economy. Having similar Markov and Ramsey allocations gives a rationale to believe that
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the organizational equilibrium allocation of the approximating economy is also close to our object of
interest. This strategy has a strong tradition in macroeconomics where little (if anything) is known
about recursive equilibrium in distorted economies that do not have a particular functional form.
Consequently, the equilibrium is computed for a similar economy in a certain sense (see Kubler and
Schmedders (2005) and Kubler (2007) for related discussions).

For brevity, we limit our analysis to a more specific class of economies, in which the action and the
state are univariate and a recursive structure is present from the outset. Specifically, we assume the
preferences for the agent in period t have the following recursive formulation

U(kt, at, at+1, . . .) = P (kt, at) +Q(kt+1, at+1) + βU(kt+1, at+1, at+2, . . .),

where U is strictly concave, and, following our previous notation, kt is the period-t state, at is the
period-t action, and kt+1 = F (kt, at). We also assume that F is weakly concave, and that, for each
action a, F (a, k) − k > (<) 0 in a neighborhood of k = 0 (k = ∞). The time inconsistency issue
arises as the period utility function depends on future agents’ action at+1. In general, the life-time
utility U may not be separable between kt and the sequence of actions {at+τ}∞τ=0.

Consider any stationary point of the mapping F , that is, any point (k, a) such that k = F (k, a).25

We propose a relatively flexible first-order approximation of our original economy around any such
stationary point:

P (kt, at) = P +
P k

hk

(
h(kt)− h(k)

)
+
P a
ma

(m(at)−m(a)) ,

Q(kt, at) = Q+
Qk
hk

(
h(kt)− h(k)

)
+
Qa
ma

(m(at)−m(a)) ,

F (kt, at) = F +
F k

hk

(
h(kt)− h(k)

)
+
F a
ma

(g(at)− g(a)) .

That is, we allow flexible function choices when approximating the actions at in the preference and the
technology, respectively.26 The requirement is that the functions h(·),m(·), and g(·) are monotonic
functions. When these functions are linear, we return to the standard linear approximation.

The lifetime utility can therefore be approximated by

Ũ(kt, at, at+1, . . .) = U +
Uk

hk
h(kt) +

∞∑
j=0

Um,j
ma

m(at+j) +
∞∑
j=0

Ug,j
ga

g(at+j), (14)

25Our assumptions about F imply that, for each action a, there exists a unique point k(a) such that F (k(a), a) = k(a).
26The choice of the approximating function for the state kt is irrelevant as eventually the equilibrium is about the

action at.
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where Uk = Pk+QkFk
1−βFk

and

Um,0 = P a, Ug,0 = F a(Qk + βUk)

Um,1 = Qa + βUm,0, Ug,1 = βUg,0,

Um,j = βUm,j−1, Ug,j = βUg,j−1, j > 1.

Clearly, this approximating economy is weakly separable between the state variable k and the se-
quence of actions, and our notion of organizational equilibrium can be applied. The action payoff
can be written as

V (at, at+1, . . .) =
∞∑
j=0

Um,j
ma

m(at+j) +
∞∑
j=0

Ug,j
ga

g(at+j),

=
Um,0
ma

m(at) +
Ug,0
ga

g(at) +
Um,1 − βUm,0

ma
m(at+1) + βV (at+1, at+2, . . .).

The remaining question is how to determine the point around which the approximating economy is
constructed. The approximating economy satisfies Assumptions 2, 3, and 5, so that Proposition 5
applies. Let a∗ denote the choice of action that maximizes the stationary payoff V (a, a, . . .). A
natural requirement for the choice of a is therefore that it coincides with a∗. Note that

(1− β)V (a, a, a, ...) =
Um,0 + Um,1 − βUm,0

ma
m(a) +

Ug,0
ga

g(a).

An interior solution for a∗ is only possible if a is chosen at the point that satisfies27

P a +Qa + F a

(
Qk + βP k

1− βF k

)
= 0. (15)

Utilizing the recursive structure of the action payoff, the transition path can be then constructed via
the following difference equation

(1− β)V (a, a, . . .) =
Um,0
ma

m(at) +
Um,1 − βUm,0

ma
m(at+1) +

Ug,0
ga

g(at).

In Appendix F, we further illustrate this strategy in a non-separable growth economy economy with
quasi-geometric discounting, partial capital depreciation, and CRRA preference. In this example,
we set h(·) and g(·) to be log functions and m(·) to be the power function with the same curvature

27Such a point is unique because our original utility function is assumed to be strictly concave. Since we need a
compact action set, it is in principle possible that no solution to (15) exists if the a is at the lower or upper bound,
where the appropriate inequality would need to be imposed. We only consider interior equilibria here for brevity.
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as the period utility function. We compare the Markov and the Ramsey solutions obtained in this
economy to those obtained in the approximating economy according to our strategy. Relative to
the true solution, the capital and the saving rate paths in the approximating economy are quite
close, showing that there is no need to search for better behaved approximating functions. The
predictions of the organizational equilibrium in this approximating economy are consistent with our
aforementioned equilibrium properties.

3.6 Agents as Policy Makers

Up to now, we analyzed environments in which at each point in time t a single player takes an action.
Most macroeconomic policy problems are different, in that we often are interested in situations in
which there is a single large player (the “government”), but also a continuum of competitive private
agents (the “consumers”). This is the case in our applications of Sections 4 and 5. Typically,
when policy is endogenously determined, the economy is described as a hybrid of a game and a
competitive environment. In this section, we show how we can adapt our equilibrium concept to
such an environment.28

We now assume that, given the current level of k ∈ K, the government chooses an action a

from a set A, and the consumers choose an action s from the set s(k) ⊆ S. The state evolves
according to k′ = F (k, a, s). Let the preferences for the government in period t be given by
Ψ(kt, at, st, at+1, st+1, at+2, st+2, . . .).29

Assumption 6. Given a sequence of government actions a := {at}∞t=0, there exists a unique com-
petitive equilibrium s(a) := {st(a)}∞t=0, where the sequence s(a) is independent of the state k0.

Assumption 6 plays two roles. First, the uniqueness allows us to define government preferences
directly over the sequence of government actions, taking as given that households will play the
associated competitive equilibrium. Second, the fact that s is independent of the initial state extends
the weak separability requirement that is at the heart of our method. We can then define the
government’s preferences over sequences of actions as

U(k, at, at+1, at+2, . . .) := Ψ(k, at, st(a), at+1, st+1(a), at+2, st+2(a), . . .), (16)
28The setup here uses ideas from Stokey (1991).
29As in Section 3, sometimes it may be necessary to transform the original government action so that it is feasible

independently of the choices of the private sector and the current level of the physical state, and so that the desired
separability property of preferences emerges. A similar re-scaling may be needed for the household choices.
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where for t ≥ 0, kt is computed recursively as

kt+1(k) = F (kt(k), at, st(a)). (17)

These preferences now take the same form as in the one-agent case, so once again we impose Assump-
tions 1 and 2, and we define an organizational equilibrium as in Definition 1. While the definition
of an organizational equilibrium is the same in terms of sequences of actions, its connection to sym-
metric subgame-perfect equilibria of an underlying game is slightly different, due to the presence of
competitive households that act in anticipation of the government’s future actions. In Appendix G,
we adapt the analysis of Section 3 to this new environment and we provide an explicit game that
describes the strategic interaction between the government and the households over time.30

The interaction of private and government decisions is such that Assumptions 3 and 5 fail in our
applications. Fortunately, Proposition 3 provides an alternative way of proving existence, that we
adopt in what follows.

In Section 3.1 and 3.2, an organizational equilibrium represents a refinement of a subgame perfect
equilibrium based on specific beliefs that the single player at each stage entertains about future play.
In the richer environment considered here, coordination of beliefs involves both the government and
a continuum of private players. It is natural for this coordination to take the form of institutions
and laws, which is why we call ours an “organizational equilibrium.” Nonetheless, it is important to
contrast this role of institutions as purely coordinating expectations from an alternative, in which
they represent forms of commitment. As in Prescott and Rios-Rull (2005), we take the view here
that laws can be freely changed ex post and that government agencies can be reformed, so that they
do not represent effective forms of commitment, and show how cooperation across different players
over time can still be sustained, even when the self-interest of future players rules out the usual
grim-trigger strategies.

4 Climate Change Mitigation

The discussion around policies on climate change has often been cast in terms of intergenerational
fairness and institutional agreements that support better policies. Moreover, such policy formation
has taken a gradual approach of successive rounds of international negotiation that led to increasingly
ambitious goals over time, from the UN Framework Convention on Climate Change in 1992, to the
Kyoto Protocol in 2005 and the Paris agreement in 2015 and even to the recent agreement to end fossil

30In the application that we will describe shortly, we assume that the government is a first mover within each
period, so that households react contemporaneously to a government deviation. The definition could be adapted to
environments where the opposite timing prevails, as in Ortigueira (2006).
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fuels in The United Nations Climate Change Conference (COP28) of December 2023. Undoubtedly
there are many other factors that shape the evolution of the carbon tax. Nevertheless, we think
that our theory captures well such features and delivers a natural way of thinking about the reason
agreements are gradually ratcheting up emission standards rather than achieving an ultimate goal
in a big-bang fashion.

Environment We follow Golosov et al. (2014) when specifying the preferences, the production
technology, and the carbon evolution dynamics, with the exception that we allow quasi-geometric
discounting which captures the idea that short-sighted politicians may have a bias in favor of the
current generations. Assume that the objective of the policy maker at period t is given by

log(ct) + δ
∞∑
j=1

βt log(ct+j),

where δ ∈ (0, 1] accommodates the idea that the policy maker is facing the conflict of interest between
different generations as in Jackson and Yariv (2014, 2015).

The production of the final goods requires energy input et in addition to standard inputs capital kt
and labor nt.

ct + kt+1 = yt = exp(−γqt)kαt n1−α−νt eνt .

The use of the energy input generates carbon in the atmosphere, which negatively affects production
efficiency. We denote qt as the amount of carbon accumulated in the atmosphere. The parameters
α and ν control the relative importance of various production inputs, and γ determines the damage
of carbon on the economy.

Energy is produced through labor alone:

et = A(1− nt),

where A stands for the productivity in the energy sector, and we have normalized the total labor
supply to be 1. We interpret the fossil fuel energy as coal. As discussed in Golosov et al. (2014),
coal is the most important type of fossil fuel energy that calls for government intervention, and it is
practically in unlimited supply.

The evolution of the stock of carbon is driven by the sum of a permanent component q1t and a
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persistent component q2t: qt = q1t + q2t, where

q1t = q1t−1 + ϕLet, and q2t = ϕq2t−1 + (1− ϕL)ϕ0et.

That is, a fraction ϕL of the newly emitted carbon et stays in the atmosphere permanently, a fraction
ϕL(1− ϕ0) of et exits the atmosphere immediately, and the rest stays in the atmosphere but decays
at a geometric rate ϕ.

Consider the following cost-benefit analysis on the allocation of labor between the final goods and
energy production:

ν

A

yt
1− nt

=
1− α− ν

A

yt
nt

+ ytΛt.

The left-hand side corresponds to the marginal product of et after a marginal increase of labor in
the energy sector. The first-term on the right-hand side is the marginal cost due to the reduction
of labor in the final goods sector, and the second term represents the associated environmental cost
expressed in terms of current output. The variable Λt can therefore be interpreted as the carbon tax
in a decentralized economy.

A notable feature of this environment is that it is separable between the actions (saving rate st and
labor allocation to final goods production nt) and the state variables (capital stock kt and carbon in
the atmosphere q1t, q2t). Given a sequence of saving rates {s0, s1, . . .}, a sequence of labor allocation
{n0, n1, . . .}, and the initial state (k0, q1,−1, q2,−1), the payoff of the policy maker at time 0 can be
expressed as

U0 = G(k0, q1,−1, q2,−1) +W (s0, s1, . . .) + V (n0, n1, . . .),

where the part involving the allocation of labor on energy production can be expressed as31

V (n0, n1, . . .) = γA

(
1 +

δχβ

1− χβ

)
(1− n0) + (1− α− ν) log n0 + ν log(1− n0)

− δβ

 γA

1− βχ

∞∑
j=0

βj(1− nj+1) + (1− α− ν)

∞∑
j=0

βj log nj+1 + ν

∞∑
j=0

βj log(1− nj+1)


31The expression for W is given by

W (s0, s1, . . .) = log(1− s0) +
δαβ

1− αβ log(s0) + δ

∞∑
j=1

βj
(

log(1− sj) +
αβ

1− αβ log(sj)

)
.

Note that the optimal carbon tax is independent of the sequence of saving rates.
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Note that once the sequence of labor is specified, the implied carbon tax Λt is also determined.
Therefore, to understand the dynamics of the carbon tax Λt, it is sufficient to characterize the
equilibrium allocation of labor.

Steady-state analysis Thanks to the separability property, it is straightforward to apply our
theoretical results to derive the allocation in the organizational equilibrium. First, we compare
carbon taxes in the long-run steady state. These are given by
Ramsey outcome: ΛR = γ

(
ϕL
1−β + (1−ϕL)ϕ0

1−ϕβ

)
Markov equilibrium: ΛM = γ

(
ϕL
1−β (1− β + δβ) + (1−ϕL)ϕ0

1−ϕβ (1− ϕβ + δϕβ)
)

Organizational equilibrium: : ΛO = γ
(
ϕL
1−β

(
1− β + δβ

1−β(1−δ)

)
+ (1−ϕL)ϕ0

1−ϕβ

(
1− ϕβ + δϕβ

1−β(1−δ)

))
,

with ΛR > ΛO > ΛM when δ ∈ (0, 1).

Let us unpack these expressions. Starting from the Ramsey outcome, γ ϕL
1−β + γ (1−ϕL)ϕ0

1−ϕβ simply
represents the present value of the damage after one unit of carbon emission, taking into account the
time path of the carbon diffusion. This formula is identical to that derived in Golosov et al. (2014).
In the Markov economy, the additional discounting resulting from δ < 1 induces the policy maker
to behave in a more myopic way, as captured by the term 1 − β + δβ < 1 and 1 − ϕβ + δϕβ < 1,
respectively. Finally, in the organizational equilibrium, each policy maker directly takes into account
the welfare of all their subsequent policy makers as their action payoff needs to be equalized, which
makes them more patient than in the Markov equilibrium. It follows that the steady state carbon
tax for the organizational equilibrium lies in the middle of the Ramsey outcome and the Markov
equilibrium.

Transition dynamics In addition to the difference in terms of steady-state carbon tax, the orga-
nizational equilibrium also predicts an interesting dynamic pattern that sheds light on the evolution
of the carbon tax. To proceed, we set the parameters related to production technology and environ-
mental damages as in Golosov et al. (2014), and set δ = 0.95 at annual frequency to allow the time
inconsistency to arise.

The solid line in Figure 3 displays the transition path of the implied carbon tax Λt under the orga-
nizational equilibrium, which features a gradually increasing path. A carbon tax acts as an invest-
ment, as it reduces current productivity, but it increases future productivity. As in our benchmark
consumption-saving problem, in an organizational equilibrium policymakers overcome the tempta-
tion to ignore the carbon externality only slowly and partially. In contrast, such implicit coordination
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Figure 3: Transition Path of Carbon Tax
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Notes: The calibration of {β, γ, ϕ, ϕL, ϕ0} follows Golosov et al. (2014). The additional discounting δ at annual
frequency correspond to 0.95. The prices are expressed in terms of 2010 world nominal GDP.

is absent in the Markov equilibrium, and the carbon tax remains constant at a lower level. In the
Ramsey outcome, the initial policy maker enjoys the privilege and sets a low tax level initially, but
a sudden jump to a high level follows immediately after that.

The gradualism resulting the from trade-off between current and future policy makers in the orga-
nizational equilibrium speaks to the observed evolution in the data.32 The left panel of Figure 4
presents the average carbon tax rates in Scandinavian countries over time, which are the first group
of countries that implemented the carbon tax in the world. Instead of featuring a steady level or a
disruptive jump, the carbon tax rates in these countries display a gradual increasing trend, a pattern
that is broadly consistent with the predictions of the organizational equilibrium.

We also explore how the current carbon tax rates across countries vary with the number of years
since the implementation of the carbon tax. Ceteris paribus, the carbon tax rate is increasing in
the years of implementation in an organizational equilibrium. After controlling for the quantity of
carbon emission covered by the tax and the GDP per capita, we find that the carbon tax rates
are positively correlated with the years of implementation, which lends additional credibility to our
theory. The right panel of Figure 4 displays the corresponding binscatter plot.

Another important case is the graduate change of the climate policy in China, which has the most
GHG emissions and just started Emissions Trading System in 2021. The trade-off between current
versus future generations is directly revealed from speeches by their successive presidents. In 2008,

32The main data source for the carbon tax is the Carbon Pricing Dashboard constructed by the World Bank.

35



Figure 4: Evolution of Carbon Taxes
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Notes: In the left panel, the blue dots correspond to the average carbon price in Denmark, Finland, Norway, and
Sweden. The original nominal carbon prices are converted to real prices using country specific GDP deflator with
2010 as the base year prices. The red solid line repents a quadratic fit of the data over time. In the right panel, we
consider the following regression: τj = β0 +β1tj + controls+ residuals, where τj is country/region j’s carbon tax rate
in 2023, tj is the number of years since implementation, and we include the carbon tax covered CO2 emission and
the GDP per capita as controls. The estimated coefficient β1 is 1.11 with p value 0.017.

the former president Hu Jintao stated that “China is a developing country in the process of indus-
trialization and modernization... China’s central task now is to develop the economy and make life
better for the people.” In 2020, the current president Xi Jinping stated that “China will increase
its nationally determined contributions, adopt more powerful policies and measures, strive to reach
the peak of carbon dioxide emissions by 2030, and strive to achieve carbon neutrality by 2060.”33

These statements directly reflect the conflict of interest between current and future generations and
signals the incentive of delaying the process. Our theory provides a natural solution that balances
the interests across generations via a gradual reform.

5 Tariff Policies

Similar to the case of climate change, international institutions to foster free trade have evolved
gradually. The GATT (General Agreement on Tariffs and Trade) evolved through several rounds of
negotiations, and eventually became the World Trade Organization. Through each of these rounds,
the number of goods covered by agreements was gradually expanded, and agreements covered an
increasingly broad set of protectionist policies. We describe here a simple model that captures these
features well. In this model, policymakers trade off a short-run cost of free trade, arising from
distributional losses across different types of workers, with a long-run benefit arising from faster

33These are quoted from Hu Jintao’s remarks at G8 Outreach Session on July 9, 2008, and from Xi Jinping’s speech
at the United Nations General Assembly on September 22, 2020, respectively.
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growth.

Environment The world consists of two symmetric countries, each of which produces two types
of tradable intermediate goods. We mainly describe the environment in the home country, and we
focus on the symmetric equilibrium.

The problem of a representative firm that produces intermediate good i is

max
`it,kit

pitAik
1−α
t `1−αit kαit − wit`it − rtkit,

where `it and kit are capital and labor used by firm i, and kt is aggregate capital. The production
efficiency in sector 1 is higher than that in sector 2, A1 = A > A2 = 1, while in the foreign country,
the opposite prevails. That is, country 1 has comparative advantage in producing good 1, and
country 2 has comparative advantage in producing good 2.

We assume that there is a measure one of workers in each sector and there is no labor mobility
across sectors. This assumption of fixed labor supply captures the idea that it is difficult for workers
to reallocate across sectors.34 As a consequence, wage rates in the two sectors may differ. Capital
is free to flow across sectors.35 Aggregate capital provides a positive externality on the production
efficiency, captured by k1−αt , generating the potential for endogenous growth.

The final good that is used for investment and consumption is produced by aggregating the inter-
mediate goods via a CES function with associated aggregate price index pt

yt =
[
0.51−ρmρ

1t + 0.51−ρmρ
2t

] ρ−1
ρ , pt =

[
0.5p

ρ
ρ−1

1t + 0.5p
ρ
ρ−1

2t

] ρ−1
ρ

.

We normalize the price of goods 2 in the home country to be 1, p2t = 1. In a free trade economy
without tariffs, symmetry implies p1t = p2t = 1, with country 1 exporting some of good 1 in exchange
for some of country 2’s production of good 2. When the government sets the tariff rate to be τt on
imported goods, the price of goods 1 in the home country becomes p1t = 1

1+τt
. A higher tariff lowers

the relative price of the good 1 in country 1, since it prevents it from fully exploiting its comparative
advantage.

Given the total capital kt and the tariff τt in both home and foreign countries, it is straightforward
to solve for the static allocation and prices. In the static symmetric equilibrium, the wage rates and

34We could relax this assumption and state that workers are only immobile for one period, generating even stronger
time inconsistency.

35This assumption is also not essential.
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the interest rate are given by

w1t = (1− α)(1 + τt)
−1A(1− φt)αkt, w2t = (1− α)φαt kt, rt = αφα−1t , (18)

where φt is the fraction of capital allocated in sector 2, φt =

(
1 +

(
A

1+τt

) 1
1−α
)−1

.

With a reduction of the tariff rate (both in the home and foreign countries), the exporting sector
expands, resulting a lower φt. Accordingly, the wage rate in sector 1 is higher, and the wage rate in
sector 2 is lower. The reduction in importing sector’s wage rate provides a rationale for protectionism.
Overall, a lower tariff rate improves production efficiency, and the return to capital, rt, is higher.

Capitalists are responsible for the capital accumulation. Their problem is

max

∞∑
t=0

βt
c1−σt

1− σ

subject to

ct + kt+1 =

(
rt
pt

+ 1− δ
)
kt.

The capitalists prefer a low tariff as the implied interest rate will be higher. Let st denote capitalists’
saving rate. The Euler condition can be expressed as(

1− st
st

)−σ
= β

(
rt+1

pt+1
+ 1− δ

)1−σ
(1− st+1)

−σ (19)

We focus on the case in which saving is increasing in the interest rate (and thus decreasing in the
tariff); this happens when the intertemporal elasticity of substitution (σ−1) is larger than unity.
Note that the real interest rate is only a function of the tariff rate.

The policy maker in period t attempts to maximize an average worker’s welfare in the economy,
which is given by

Ut ≡
∞∑
k=0

βk (log c1t + log c2t) .

Workers live hand to mouth, consuming their labor income wit and the tariff revenues that are
rebated to them. In the static equilibrium, the consumption levels are proportional to the capital
shock kt

log c1t + log c2t = χ(τt) log kt,
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where χ(τt) only depends on the tariff and the formula is specified in Appendix I.

From the policymaker’s perspective, a tariff benefits workers in sector 2 in the short run, shielding
them from the foreign competition. The utilitarian welfare function makes a tariff desirable in the
short run, since workers in sector 2 earn a lower wage under free trade. For the future, the expectation
of a low tariff encourages capital accumulation, benefiting all workers. As a result, under commitment
a policymaker would always prefer setting relatively higher tariffs initially and lower tariffs down the
road. This is the root of time inconsistency.

Equilibrium allocation The economy is separable between capital stock kt and the tariff rate τt.
Substituting the wage rates from the static equilibrium, we obtain that, given an initial capital stock
k0, the payoff to the policymaker from a sequence of tariff rates {τt} is

U0 =
1

1− β
log k0 +

∞∑
t=0

βtχ(τt) +
β

1− β

∞∑
t=0

βt
(

log st + log

(
rt
pt

+ 1− δ
))

.

The second term related to χ(τt) captures the short-run consequence of tariffs which protect the
importing sector. The third term related to st and rt captures the long-run consequence of tariffs
which discourage investments by capitalists.

Note that the current saving rate is shaped by future tariff policies according to the Euler condition
(19). In a Markov equilibrium, the policy maker will take tariff rates in the future as given. When
setting the current tariff rate, the dependence of the saving rate on the tariff rate will be ignored.
As a result, the policy maker fails to internalize the benefit of lowering tariffs and inducing more
capital in the future, and leans towards protectionism. In contrast, in the organizational equilibrium,
the action payoffs of policy makers in different periods are equalized. The forward-looking behavior
allows the policy maker to partially internalize the long-run benefit of free trade. As a result, the
steady-state tariff rate in the organizational equilibrium is lower than that in the Markov equilibrium.

Transitional dynamics Now we turn to the dynamic pattern of tariffs. It is well documented
that there is a decline of world tariff over time in the process of globalization. Figure 5 displays the
world average tariff from 1950 to present, which gradually decreases from around 16% to 4%. There
is a large literature that speaks to this graduate change. For example, in Bond and Park (2002),
gradualism comes from the asymmetry between countries: the efficient allocation specifies a rising
payoff for the country that has an initial binding incentive constraint. Chisik (2003) considers an
environment with specialization and capacity irreversibility in the development of partner-specific
capital which increase the benefit of further liberalization and the penalty of defection. This dynamic
decreases the lowest self-enforcing tariff over time. Instead of the contract enforcement issue, Zissimos
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(2007) takes a more applied view, and shows directly how specific rules in the GATT (General
Agreement of Tariffs and Trade) created strategic incentives for gradual liberalization.

Figure 5: World Average Tariff
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Notes: This tariff series is the unweighted world average tariff from Figure 8 in Antràs (2020).

Our theory provides an alternative rationale for the observed gradual decline, which is based on the
intertemporal trade-off between the short-run welfare of workers that calls for protectionism and
the long-run welfare of workers that benefits from development resulting from open trade. Different
equilibrium notions we have considered put different weights on this intertemporal trade-off. To
illustrate the behavior of the model, we set the duration of a model period to 7 years and choose
α = 0.33, β = 0.7, δ = 0.65. The elasticity of substitution is set to be 1.1, that lies in the middle
of various empirical estimates.36 Finally, we set A = 3.5 so that the average level of tariff in the
organizational equilibrium is comparable to that in the data.

The left panel of Figure 6 displays the transition paths of tariff. Starting from the Markov equilib-
rium, it features a constant high level of tariff rate as policy makers behave in the most myopic way.
In the Ramsey outcome, the policy maker sets a high level of tariff initially but quickly eliminates
it afterwards. With organizational equilibrium, the tariff starts from a level in the middle of the
previous two cases and gradually converges to a low level of tariff rate, which is broadly consistent
with the observed pattern in the data.

The right panel of Figure 6 further illustrates the aforementioned trade-off by comparing the con-
sumption paths that start with the same initial capital stock. It is interesting to inspect the con-
sumption of workers in sector 2 who are subject to the competition with imported goods. In the

36See Boehm et al. (2023) for a more detailed discussion.
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Figure 6: Transition Paths of Tariff and Consumption
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Notes: The left panel displays the transition paths of tariff rates in the three different equilibria. The right
panel compares the consumption paths for workers in the exporting sector (c1t) and importing sectors (c2t)
under the organizational equilibrium and the Markov equilibrium, respectively.

Markov equilibrium, workers enjoys more consumption initially than the organizational equilibrium
thanks to the higher level of tariff. However, in the long run, a lower tariff in the organizational
equilibrium induces a higher allocation efficiency and encourages a faster capital growth rate. The
consumption level eventually exceeds that of the Markov equilibrium.

While introducing shocks is beyond the scope of this paper, we conjecture that our setup could
be well suited to analyze what happens following periods of temporary disruption in international
cooperation. To explain why, we consider a tremble, in which for some reason in period t governments
unexpectedly raise tariffs to some value τ̃ rather than progressing along the path of liberalization. In
an organizational equilibrium, there is no need for a grim-trigger strategy to punish such a deviation;
rather, it is sufficient to revert to the path that starts from τ̃ on. We view this as a potentially useful
way of studying the current environment in international trade, where the reimposition of tariffs have
not led to all-out trade war, but have set cooperation back, with negotiations restarting to undo the
newly introduced barriers.

6 Conclusion

Rome was not built in a day. Likewise, many institutions that underpin solid policy evolved slowly.
Sargent (2017), and Hall and Sargent (2014; 2015; 2018) describe the way the United States acquired
a reputation for honoring its debt over time. The current environment of relatively low inflation
emerged after the tumultuous 70s, during which governments gradually learned how to manage
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monetary policy without resorting to the anchor of a commodity standard. Social security started
as a narrow and limited program and only later grew in size and scope.

In this paper, we provided an equilibrium concept that is well suited to analyzing such situations.
The equilibrium eschews abrupt transitions and is not (or at least not necessarily) supported by
grim triggers, but rather cooperation for the common long-term good evolves slowly and would
potentially also erode slowly. While the constraints that we impose on equilibrium strategies appear
very restrictive, what is most interesting to us is that in our computed examples, they still permit
very good outcomes, bringing substantial improvement to the dismal predictions of Markov equilibria.
At the same time, the notion of organizational equilibrium allows for clear-cut comparative statics
exercises and does not suffer from the pervasive multiplicity of subgame-perfect equilibria, which is
implied by the folk theorem. Because of this, it is more readily amenable to empirical analysis.

For future research, our equilibrium concept can be applied to understand certain sociopolitical
phenomena. Two fitting examples are the extension of civil rights in the U.S. after the civil war
and the gradual creation of the European union. In these situations, a common good (such as
the institution) has to be provided but different states or parties may have different time horizons.
The aggregated social welfare function is necessarily time inconsistent (Jackson and Yariv, 2014).
Through the lens of our equilibrium, a good institution will gradually emerge (unlike in a Markov
equilibrium), but will remain imperfect (worse than Ramsey).
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A Proofs of Section 3.1

A.1 Proposition 6

Proposition 6. Under Assumptions 1 and 2, there exists a subgame-perfect equilibrium of the game that
satisfies Requirements 1 and 2.

Proof. Assumption 2 follows Kocherlakota (1996), who uses it in Proposition 4 to prove that a reconsideration-
proof equilibrium exists for the game whose period-t payoff is V (at, at+1, at+2, ...). The strategies of such a
game represent a subgame-perfect equilibrium of our game with a state variable: weak separability implies that
the state does not affect the preference ordering of each player over the sequence of future actions. Moreover,
these strategies satisfy Requirements 1 and 2 by the definition of a reconsideration-proof equilibrium.

A.2 Proof of Proposition 1

Proof. Let (aE0 , a
E
1 , . . .) be the outcome of a reconsideration-proof equilibrium for the game whose period-

t payoff is V (at, at+1, at+2, ...), and let V̄ be its associated value. This means that, for any period t and
any actions a ∈ A, there exists a continuation sequence (aĒt+1, a

Ē
t+2, . . .) which is also the outcome of a

reconsideration-proof equilibrium and is such that

V (aEt , a
E
t+1, a

E
t+2, . . .) ≥ V (a, aĒt+1, a

Ē
t+2, . . .). (20)

We then have
V (a, aĒt+1, a

Ē
t+2, . . .) = Ṽ (a, V̂ (aĒt+1, a

Ē
t+2, . . .)).

Acknowledging that the sequence (aĒt+1, a
Ē
t+2, . . .) is potentially a function of the deviation a (as well as of

time t, which we can hold fixed), define

V := inf
a∈A

V̂ (aĒt+1, a
Ē
t+2, . . .). (21)

By the compactness of A, Tychonoff’s theorem, and continuity of V̂ , we can find a sequence of actions a∗0, a∗1, ...
that attains the infimum in equation (21) above. Exploiting Assumption 3, this sequence ensures subgame
perfection and satisfies the no-restarting condition (Requirement 3):

V (a∗0, a
∗
1, a
∗
2, . . .) ≥ V (a, a∗0, a

∗
1, . . .).

This path attains the value V̄ , so that it continues to satisfy the optimality condition of Requirement 2. Hence,
playing (a∗0, a

∗
1, ....) followed by a restart after any deviation is an equilibrium that satisfies Requirements 1, 2,

and 3, and therefore (a∗0, a
∗
1, ....) is an organizational equilibrium.
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B Proofs and Details in Section 3.2

The players in the game are nature, plus an infinity of players 0,1,... indexed by the time at which they act.
Nature moves first, choosing a time t̂, from which record keeping is possible. We assume that this distribution
has full support on N.37

Players take two actions:

• Player t chooses at ∈ A.

• In addition, a player may choose a record-keeping action ρt ∈ {S,C,H}, where S stands for starting
record keeping, C stands for continuing record keeping, and H for hiding past records. Whether these
actions are available at time t depends on the past in a way that we will soon make explicit.

We are now ready to define histories and information. The first history is ∅, at which stage nature moves.
In all periods t < t̂, players only choose the action at. While the history of play is (t̂, a0, ..., at−1), their only
information is that t < t̂, and the current level of the state kt: they do not observe any of the past players’
actions, and they only know that record keeping is not yet possible. In period t = t̂, the history of play is also
(t̂, a0, ..., at−1). Player t = t̂ observes kt, does not observe any of the actions taken by the past players, but it
knows that t ≥ t̂ and that either t = t̂ or ρt−1 = H: that is, it knows that it is either the first player with the
opportunity to set up record keeping, or the opportunity was available in the past, but player t− 1 chose not
to adopt it and to hide the previous history. Player t = t̂ is called to choose an action ρt ∈ {S,H} as well as at.
In period t̂+ 1 and all subsequent periods, the history of play is (t̂, a0, ..., at̂−1, ρt̂, at̂, ρt̂+1, at̂+1, ..., ρt−1, at−1).
In each of these periods, if ρt−1 = H, then player t only knows that record keeping is possible and the
level of kt; it does not know whether t = t̂ or ρt−1 = H. In this case, player t has the same options as
player t̂. Otherwise, let t̃ be the last time action S was taken; player t then knows that t̂ ≤ t̃ and it knows
(ρt̃, at̃, ρt̃+1, at̃+1, ..., ρt−1, at−1) (in addition to kt). Player t has 3 options for ρt: first, it can choose ρt = H,
in which the next player will start again with no record of the past; second, it can choose ρt = C, that is, to
continue record keeping: in this case, player t+ 1 will know (ρt̃, at̃, ρt̃+1, at̃+1, ..., ρt, at). Finally, it can restart
the history (ρt = S), disavowing the past, but recording its own actions, in which case player t + 1 will only
observe (ρt, at). In all cases player t+ 1 will observe kt+1.

A strategy σt for player t is a mapping from the set of time-t histories, Ht, to the set of actions A and (when
available) record-keeping choices ρt ∈ {H,S,C}, that is measurable with respect to the information available
at time t. As before, a strategy profile σ is a sequence of strategies, one for each player. It is useful to
distinguish between the two choices made by agents: accordingly, let σa t be the component of σt(ht) that
contains the prescribed action a ∈ A after history ht, and σρ t(ht) be the prescribed choice of record keeping.
Analogously, we define σa := {σa t}∞t=0 and σρ := {σρ t}∞t=0.

We restrict attention to equilibria that satisfy Requirement 1: that is, they involve strategies that are inde-
37It would be equivalent to assume that nature moves in each period up to t̂, as long as the conditional hazard rate

of the start of record keeping is the same. This is because nature’s choice is not fully observed by the agents anyway.
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pendent of kt.

We define a full-disclosure equilibrium to be an equilibrium in which σρ t(ht) = S for all histories for which
t ≥ t̂ and no previous record of play is known, and σρ t(ht) = C for all histories for which player t observes
a record of past actions. In a full-disclosure equilibrium, players introduce record keeping as soon as possible
and never erase any of the record available, independent of the actions of past players.

The proof of Proposition 2 relies on a sequence of lemmata:

Lemma 1. Let σ be a sequential equilibrium that satisfy Requirement 1 in the game defined above. Then:

1. There exists a full-disclosure sequential equilibrium σ̃ that also satisfies that satisfy Requirement 1 and
such that the same actions {at}∞t=0 are taken on the equilibrium path under σ and σ̃.

2. If σ satisfies Requirement 2 from period t̂ (whatever t̂ turns out to be), then σ̃ can be chosen to also
satisfy the same requirement.

Proof. Our proof only looks at pure-strategy equilibria. It could be extended to mixed-strategy equilibria,
in which players randomize over their choice of record keeping, using the same logic presented here, as long
as a public randomization device is present that allows coordination across players. We omit the case of
mixed-strategy equilibria for brevity.

1. Assumption 1 implies that, if future players do not condition their choices on the state k (but potentially
condition their choices on all their remaining information in any arbitrary way), the optimal choice for
a current player is independent of the current state. In looking at equilibria that satisfy Requirement 1,
we can therefore leave the state k in the background and focus only on the history of actions, disclosures,
and the time at which record keeping becomes available.

Let σ = {σt}∞t=0 be the strategy profile of the sequential equilibrium that contains the equilibrium action
path {at}∞t=0.

We need to construct an alternative strategy profile σ̃ that contains the same equilibrium action path,
but involves full disclosure. We will do so by creating a suitable mapping from the set of histories to
itself, and setting σ̃a t(ht) = σa t(η(ht)). η is constructed recursively as follows:

• For t ≤ t̂, η(ht) = ht.

• For t > t̂ and histories in which ρt−1 = H, η(ht) = ht.

• For t > t̂+ 1 and histories in which ρt−1 = S and σρ,t(ht−1) = S or σρ,t(ht−1) = C, η(ht) = ht.

• For t > t̂+1 and histories in which ρt−1 = S and σρ,t(ht−1) = H, η(ht) = (ht−1, H, at−1,ht), where
at−1,ht is the action taken in period t− 1 according to the history ht.

• For t > t̂ and histories in which ρt−1 = C, we define η recursively as η(ht) = (η(ht−1), σρ,t(h
t−1), at−1,ht).
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Furthermore, whenever t ≥ t̂, σ̃ρ t = S if no record keeping is currently in place, and σ̃ρ t = C otherwise,
in line with the definition of a full-disclosure equilibrium.

In words, σ̃ is constructed from σ by assuming that agents take the same actions under the two strategy
profiles whenever they do not observe the past. When past actions are observed from s̄ on, the strategy
profile σ̃ prescribes that the agents take the same actions they would have taken under σ when faced
with a history that has same choices for (a0, ..., at−1), but in which past players from s̄ on chose to hide,
start, or continue record-keeping according to the equilibrium profile σ. At the same time, σ̃ always
prescribes full disclosure. Next, we verify that σ̃ is a measurable strategy with respect to the information
sets available to the players at each point t. The choice of ρ only depends on whether record keeping is
possible and whether it is inherited from the past, which is observable to an agent at the time it makes
its choice. Furthermore, by construction, the mapping η is such that the prescribed action σ̃a t(ht) is
the same for all histories that share the same observable record.38

Next, we verify that σ̃ represents a sequential equilibrium. A player’s payoff only depends on the current
and future actions at ∈ A, and only indirectly on record keeping choices.

• In any period t < t̂, the current choice of at by player t is not known to future players and therefore
it has no impact on any future action. Furthermore, the two strategies σ and σ̃ imply the same
sequence of future actions (at+1, at+2, ...) along the equilibrium path.39 The optimality of σ̃t then
follows directly from that of σt.

• Consider next periods t ≥ t̂ and histories ht such that no record is available to player t. For such
histories, η(ht) = ht. There are two possibilities. First, suppose that σρ(ht) = S. Then, no matter
what choice of (ρt, at) player t takes, the equilibrium implies that future players will take the same
actions {as}∞s=t+1 under profiles σ and σ̃. Hence, σ̃t(ht) = σt(h

t) is an optimal choice. Suppose
instead that σρ t(ht) = H, that is, according to the equilibrium profile σ, player t should hide its
action. In this case, η is such that player t gets the same payoff whether it chooses ρt = S or
ρt = H, since η(ht, H, at) = η(ht, S, at): player t is indifferent between starting record keeping or
not, because in either case future players will ignore its play and behave as if no record had been
taken in t. Starting record keeping is thus weakly optimal, and taking the same action that would
have been taken under the profile σ is optimal as well.40

• Consider histories ht in which a record is present. The reasoning is similar. If σρ,t(η(ht)) = C,
then, no matter what choice of (ρt, at) player t takes, the equilibrium implies that future players
will take the same actions {as}∞s=t+1 under profiles σ̃ and history ht as they would under σ and
history η(ht). Hence, if σt(η(ht)) is optimal (taking as given that σ will be followed in the future),
then σ̃t(ht) is also optimal, if future players play according to σ̃. If σρ t(η(ht)) = H, then under
σ̃ future players will ignore past actions whether player t chooses ρt = H or ρt = C, and their
future actions will follow the course dictated by σ|(ht,H,at). By the measurability restriction,
σ|(ht,H,at) = σ|(η(ht),H,at). Hence, player t is indifferent between playing C or H. If player t

38This assumes that the property is true for σ, which must be the case for σ to be a valid strategy profile and
therefore a valid equilibrium, provided that σ does not condition on kt, which is guaranteed by Requirement 1.

39Notice that future actions are in general uncertain and depend on the realization of t̂, but their stochastic process
is identical in the two equilibria.

40Since future players will ignore the action at, player t will maximize its payoff assuming that its action does not
affect the future, as if no record were taken, just as it would under the strategy σ, which prescribes hiding the record.
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chooses to restart the record, then the future players’ actions will evolve according to σ|(ht,S,at).
Measurability implies again that σ|(ht,S,at) = σ|(η(ht),S,at). Since σ is an equilibrium profile,
playing σt(η(ht)) (which in this case involves hiding the record from future players) is weakly
better than playing S along with any of the possible actions, under the assumption that future
players will follow the same profile σ. It follows that the consequences of playing H vs. S and any
action at in period t under history ht when future players will follow σ̃ are the same as those of
playing the corresponding actions under history η(ht) when future players will follow σ. Hence, if
σ(η(ht)) = H, playing S is a (weakly) dominated choice. In sum, in this case player t is indifferent
between H and C, and it weakly prefers either to S, which ensures that it is optimal for its to
play C. Furthermore, choosing at = σ̃a t(h

t) = σa t(η(ht)) is optimal because it involves a static
optimization taking as given the future choices (that will be independent of the current at and
will be the same under ht and σ̃ as they are under η(ht) and σ). The last case to consider is one
in which σρ t(η(ht)) = S; this case is similar to the previous one. Specifically, the measurability
restriction implies σ|(ht,S,at) = σ|(η(ht),S,at). Furthermore, if player t chooses ρt = C, σ̃ is such
that future players will choose the same sequence of actions whether player t chooses ρt = S or
ρt = C: these actions will only depend on at, which is the only element of the record that is passed
to future players according to the strategy σt. If player t chooses ρt = H, the future equilibrium
path unfolds according to σ̃|(ht,H,at) = σ|ht,H,at = σ|(η(ht),H,at), where the last equality follows
the usual measurability restriction. If σt(η(ht)) = S, then playing ρt = S is weakly better than
playing ρt = C at η(ht) if σ will be followed in the future; this then implies that S (and the best
action at conditional on S) is weakly better than C (and the best at conditional on C) at history
ht if σ̃ will be played in the future. This establishes that, under σ̃, playing C yields the same
payoff as playing S, and a weakly better payoff than playing H. So, playing C is optimal. Finally,
the usual equivalence of future consequences implies that playing at = σ̃a t(h

t) = σa t(η(ht)) is
optimal.

2. Note that σ̃ is constructed so that the actions on the equilibrium path starting from any history ht

(whether the history itself is on or off equilibrium) are the same as the actions on the equilibrium path
starting from η(ht) when σ is played. The mapping η is such that histories with t ≥ t̂ are mapped
into histories with t ≥ t̂. If V is symmetric, then it achieves the same action payoff V following any
history that has t ≥ t̂; as a consequence, the same property is inherited by σ̃. This implies that the set
of values attainable by sequential equilibria satisfying Requirement 1 from period t̂ is the same as the
set of values attainable by full-disclosure sequential equilibria satisfying Requirement 1 from the same
period; the maxima of the two sets will thus coincide, completing the proof.41

Lemma 2. Let σ̃ be a full-disclosure state-independent sequential equilibrium for the game in which history
can be hidden. Then:

1. σ̃a|ht̂ ≡ σ is a subgame-perfect equilibrium for the game where record-keeping starts at time 0, and it

41The inability to keep records for periods before t̂ will in general imply that the payoff in previous periods is lower.
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also satisfies state independence (Requirement 1);42

2. If σ̃ is symmetric from period t̂ on, then σ̃a|ht̂ is also symmetric.

Proof. 1. In the game in which history can be hidden, in period t̂, player t̂ starts with no information
about the past, just as in period 0 of the game where record-keeping starts at time 0. Furthermore, σ̃
is such that records will be kept from t̂ on. Take as given the choice of ρt dictated by σ̃, and focus on
the choice of at. In order for σ̃ to represent a sequential equilibrium, at any time t ≥ t̂ and after any
history ht it must be the case that σa t(ht) (along with starting record keeping if no record is present or
continuing it otherwise) is optimal, conditional on the fact that future players will continue to play σ̃.
Let ht

a,t̂
represent the subcomponent of history ht that captures the history of actions (at̂, at̂+1, ...at).

Since σ̃ implies that future players will behave in such a way that the entire history of play from t̂ is
known, it then follows that σa t(ht) must be optimal in the game where record keeping starts in period
0 after history ht

a,t̂
, assuming that future players will play according to the strategy profile σ̃a|ht̂ .

2. Symmetry implies that the action payoff V on the equilibrium path conditional on attaining any history
ht with t ≥ t̂ is the same. This property is inherited by σ̃a|ht̂ in any subgame following a history ht

a,t̂
,

since the action paths coincide going forward.

Lemma 3. Let σ be a symmetric state-independent subgame-perfect equilibrium of the game where record-
keeping starts in period 0. Then, if and only if σ satisfies Requirement 3 as well, there exists a state-independent
full-disclosure sequential equilibrium σ̃ of the game where history can be hidden, which is symmetric from period
t̂ and is such that σ̃a|ht̂ ≡ σ.

Proof. Assume first that σ satisfies Requirement 3. The condition σ̃a|ht̂ ≡ σ fully characterizes σ̃a from period
t̂ on. To see this, let ht be an arbitrary history in which t > t̂+ s and player t observes (at−s, at+1−s, ..., at−1);
this implies that either player t− s− 1 chose to hide records, or player t− s chose to restart them, while all
subsequent players up to t chose to continue record keeping. This history is in the same information set as a
history with the same sequence of actions (at−s, at+1−s, ..., at−1) in which t̂ = t − s and players adopted full
disclosure; actions for such history are determined by σ̃a|ht̂ ≡ σ. This observation also implies that, following
any history, the sequence of actions a that are predicted to happen along a continuation equilibrium according
to σ̃ is the same as those in a corresponding history in the game where record-keeping starts in period 0 under
σ. If all histories under σ are followed by the same equilibrium action payoff V̄ , then the same value carries
over to σ̃. To verify that σ̃ is indeed optimal after any history ht, t ≥ t̂, we denote hta s = (as, ..., at) to be the
record available to player t after history ht and proceed as follows:43

42Note that, without further assumptions, σ̃a|ht̂ may depend on the precise realization of t̂. The property still holds:
in this case, each possible continuation strategy σ̃a|ht̂ is a subgame-perfect equilibrium of the game where record-keeping
starts at time 0.

43Along the equilibrium path, the record available should start from period t̂, but we need to verify optimality even
for histories that are not on the equilibrium path.
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• Player t does not have an incentive to choose ρt = C and any action a 6= σt(h
t
a,t̂

). Assuming that
future players will follow σ̃, the consequences of such a choice would be the same as those of choosing
a 6= σt(h

t
a,t̂

) after history ht
a,t̂

in the game where record-keeping starts in period 0 when future players
follow σ; since σ represents an equilibrium, choosing a 6= σt(h

t
a,t̂

) is weakly worse.

• Player t does not have an incentive to choose ρt = S and any action a ∈ A. Following such a choice,
player t + 1 will behave as if t̂ = t, and future actions will unfold according to the strategy profile σ.
Requirement 3 implies that, whatever action player t chooses, it would be (weakly) better off playing
ρt = S and a = σ(∅), that is, choosing to restart record keeping and playing the first action of the
strategy profile of the game where record-keeping starts in period 0. This latter choice gives an action
payoff of V̄ , which is the same as that obtained by continuing record keeping and following σ̃.

• Player t does not have an incentive to choose ρt = H and any action a ∈ A. Following such a choice,
player t + 1 and subsequent players will follow the strategy σ as if the game in which record-keeping
starts in period 0 took place from that point on. Requirement 3 implies that, faced with this prospect,
player t does not have any action that can guarantee a payoff higher than V̄ for herself.

To finish establishing the “if" part of the Lemma, the last step is to construct the strategy profile σ̃ in periods
t < t̂. In these periods, the actions taken by player t will not be observed by future players; as long as σ̃
is independent of the state, the actions of the current player will thus have no consequences on the actions
taken by future players. We thus need to prove existence of a sequence of actions (ã0, ã1, ...) that will be taken
by players in period t if t < t̂, and that are optimal given that the same sequence will be continued up to
the unknown time t̂ and given that starting in period t̂ actions will unfold according to the equilibrium path
dictated by σ. Given σ, consider a correspondence M : A∞ ⇒ A∞ that associates to a sequence (a0, a1, ...)

all the sequences such that player t is choosing optimally given that (a0, a1, ...) will be followed up to period
t̂ and σ will be followed from period t̂ on. By Assumptions 2 and 4 and the theorem of the maximum, M is
nonempty, compact- and convex-valued, upper hemicontinuous, and independent of the state. By Kakutani’s
fixed-point theorem, M has a fixed point, which can be used as our desired sequence (ã0, ã1, ...).

Conversely, suppose that σ does not satisfy Requirement 3. We know from the previous part of the proof that
player t ≥ t̂ can attain the action payoff V̄ by continuing record keeping and following the strategy σ̃, but also
by playing ρt = S and a = σ(∅), effectively starting the sequence (a0, a1, ...) of Requirement 3. However, if
player t hides the record and chooses ρt = H, then the strategy profile σ̃ implies that record keeping will start
in period t+ 1 and the actions (a0, a1, ...) will unfold from period t+ 1 instead. If Requirement 3 fails, there
exists an action ã such that V (ã, a0, a1., ...) > V (a0, a1, ...) = V̄ , which yields a higher payoff than following
σ̃; this would imply that σ̃ is not an equilibrium strategy profile.

We are now ready to prove Proposition 2.

Proof of Proposition 2. In the game in which record-keeping starts in period 0, let σ be a strategy profile whose
equilibrium path is an organizational equilibrium. By Lemma 3 we can find a state-independent strategy profile
σ̃ for the game in which history can be hidden that attains the same equilibrium path from t̂ on, whatever

8



the realization of t̂; this equilibrium is also symmetric. To complete the proof, we need to show that there
is no other state-independent equilibrium which is symmetric from period t̂ on and attains a higher payoff
from that point onwards. By contradiction, suppose that such an equilibrium existed, let it be ¯̃σ. From
Lemma 1, we can assume without loss of generality that ¯̃σ involves full revelation. Lemma 2 implies that ¯̃σ|ht̂
is a symmetric state-independent equilibrium of the game in which history can be hidden, which would then
achieve a higher payoff than σ; however, this would imply that σ does not satisfy Requirement 2 and therefore
that its equilibrium path is not an organizational equilibrium, establishing a contradiction.

C Further Discussion of Assumptions 1, 3, 4, and 5.

Assumption 1 is central to our definition. By ensuring that the preference ordering over sequences of actions
is independent of the state, it provides a way of achieving a meaningful comparison across different periods
of time (or different histories) for which the state variable is different. Section 3.5 provides an example where
this assumption fails and illustrates a way we construct an approximating economy that satisfies it. Without
uncertainty, utility functions are only identified up to monotone transformations. In this case, it can be shown
that Assumptions 1 and 4 are equivalent. However, in the game of Section 3.2, uncertainty is present, and we
need the separability property to apply to lotteries about future outcomes. In this case, utility functions are
identified up to affine transformations, and Assumption 4 is stronger than Assumption 1. Nonetheless, all of
the separable preferences that we use in practice satisfy it. A (contrived) example of preferences that satisfies
Assumption 1 but not Assumption 4 is one in which we amend the preferences of Section 2 to be

Et

[
u(ct) + δ

∞∑
τ=1

βτu (ct+τ )

]ξ
,

with ξ < 1: in addition to the standard risk aversion period by period (embedded in u), these preferences
exhibit risk aversion over the entire infinite sequence. When Assumption 1 holds but Assumption 4 fails, an
organizational equilibrium still exists, but the interpretation based on the alternative game of Section 3.2 does
not necessarily apply. An avenue to generalize the results to this case would be to study the limiting behavior
of the game of Section 3.2 to the probability of record-keeping being available in each period converging to 1.

The other Assumptions that we introduce are sufficient conditions that allow us to derive our results in a clean
way, but there is often an alternative way to derive similar results in economies that do not satisfy them, in
particular by relying on Proposition 3.

Specifically, we use Assumption 3 to prove that the game that includes only the action payoff V (at, at+1, ...)

has a reconsideration-proof equilibrium that satisfies the no-restarting condition. Weak separability between
the initial action and the following sequence of actions allows us to find a worst continuation sequence that is
a sufficient deterrent for all possible deviations. When Assumption 3 fails, the worst continuation may depend
on the action taken, so for example the threat of restarting might work for the action to be taken in period
t+ 1, but not in period t+ 2. Nonetheless, checking whether this is the case in an application is not a difficult
exercise. As an example, consider the following modification of preferences and technology of Section 2, that
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induce a violation of Assumption 3. At time t, preferences in terms of consumption sequences are given by

1

1− σ

[
c
(1−ι)(1−σ)
t + βδ

∞∑
v=0

βv
(
ct+v+1

cιt+v

)(1−σ)
]
,

with σ 6= 1 and ι ∈ (0, 1],44

kt+1 = Akt − ct.

Compared to the standard case, continuation preferences embed habit formation.45 When we express this
problem as preferences over a sequence of saving rates, so as to isolate the role of capital, we obtain

(Akt)
(1−ι)(1−σ)

1− σ

(1− st)(1−ι)(1−σ) + βδ

∞∑
v=0

βv

(
Av(1−ι)+1st+v(1− st+v+1)(1− st+v)−ι

v−1∏
n=0

s1−ι
t+n

)1−σ .
For these preferences, the marginal rate of substitution between st+1 and st+2 depends on st, so that sep-
arability of st from the remaining sequence fails. Nonetheless, we can establish whether an organizational
equilibrium exists by computing it from a recursive structure. Even when Assumption 3 fails, the proof of
Theorem 1 implies that a reconsideration-proof equilibrium of the game where preferences are given by the
action component only exists. On the path of play implied by such an equilibrium, the value from the sequence
of actions (excluding the separable state) is constant:

1

1− σ

(1− st)(1−ι)(1−σ) + βδ

∞∑
v=0

βv

(
Av(1−ι)+1st+v(1− st+v+1)(1− st+v)−ι

v−1∏
n=0

s1−ι
t+n

)1−σ = V̄ .

Using the fact that the players at time t and t+ 1 attain the same value V̄ , we derive a recursive expression
similar to the one we derive in the applications of the main text:

V̄ (1− β(Ast)
(1−ι)(1−σ)) = (1− st)(1−ι)(1−σ)

+ βδ(Ast(1− st+1)(1− st)−ι)1−σ − β(Ast(1− st+1))(1−ι)(1−σ) (22)

For any given V̄ , equation (22) is a difference equation in the saving rates that can be solved numerically. For
any given parameter combination, we can check whether this difference equation implies monotonic convergence
to a steady state. As long as δ and ι are such that there is an incentive to undersave in the first period, that
was the case in the numerical examples we tried. When this is the case, we can proceed as in the main text:

• Find the steady state that maximizes the value V̄ ;

• From equation (22), derive the function that maps st into st+1;

• For any potential initial starting point s0, we can compute the payoff that a player at time t receives if
she expects restarting from s0 to happen in period t+1 and plays the best response to it, and compare it

44When σ = 1 we obtain the logarithmic case, that preserves Assumption 3 even with the habit-formation specification
here. ι = 0 is the standard case in which Assumption 3 also applies.

45Introducing habit formation over the initial time-t consumption would break separability between the state and
the actions.
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to V̄ . If a value s0 can be found such that the threat of reversion to s0 in the future is enough to (weakly)
deter any action, we have found an organizational equilibrium. Such a value for s0 is guaranteed to
exist under Assumption 3, and not here. Nonetheless, in the numerical examples we tried, there is an
interval of values of s0 where the condition is satisfied, just as in our applications in the main text,
so an organizational equilibrium exists; as in the main text, we pick the highest saving in the interval
where no-restarting applies based on Pareto optimality (though another choice would also be valid and
converge to the same constant saving rate in the long run).

Finally, we used Assumption 5 to guarantee the existence of an organizational equilibrium which is recursive
in the continuation value. As always in infinite-horizon models, a recursive structure is of great help for
computations. Assumption 5 implies that the preference disagreement between the players moving at t and
t + 1 only concerns the action taken at t + 1: conditional on the action taken at t + 1, they agree on their
preference ordering over sequences of actions from t + 2 on. This allows us to use the continuation value
V̂ (at+2, at+3, ...) as a state in computing the equilibrium path recursively. Even when Assumption 5 fails,
there may be other ways of obtaining a recursive representation. As an example, we consider here a variant
of the consumption-saving problem of Section 2. We now assume that the planner is seeking to maximize
the utility of a two-person household where both members have standard time-consistent preferences and
share consumption, but they differ in their discount factor, generating time-inconsistency for the planner as
in Jackson and Yariv (2014, 2015). Preferences at time t are thus given by

∞∑
v=0

(βvh + λβv` ) log (ct+v) ,

with 0 < β` < βh < 1, and λ > 0 being a measure of the relative Pareto weight of the impatient member.
Section 2 is a limiting case of these preferences as β` = 0, βh = β, and δ = 1/(1 + λ). When β` > 0,
Assumption 5 fails, as we can see considering the relative discount factor between periods t + 2 and t + 3.
From the perspective of period t, the relative discount factor is (β3

h+β3
` )/(β2

h+β2
` ), while from the perspective

of period t + 1 it is (β2
h + β2

` )/(βh + β`). As a consequence, the players at t and t + 1 differ not only in the
relative valuation of saving in period t+1, but also on saving in any future period. We can nonetheless retrieve
a recursive structure for this game as well. Specifically, let V`,t(st, st+1, ...) and Vh,t(st, st+1, ...) be the values
accruing to the impatient and the patient member of the household respectively, when the planner chooses
a sequence of savng rates (st, st+1, ...), excluding the additive utility from initial capital α/(1 − αβi)kt for
i = h, `. Since each member has standard time-consistent preferences, we can express these values recursively:

Vi,t = log(1− st) +
αβi

1− αβi
log st + βiVi,t+1, i = h, `. (23)

Since this economy satisfies the conditions of Proposition 1, an organizational equilibrium exists. The utility
attained by the planner in such an equilibrium is a constant value V̄ = Vh,t+λV`,t. From the Pareto weighted
sum of the two equations we then obtain

(1 + λ) log(1− st) +

(
αβh

1− αβh
+

αβ`
1− αβ`

)
log st − λ(βh − β`)V`t+1 = V̄ (1− βh). (24)
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For any given value V̄ , equation (24) admits a unique solution for st as a function of V`,t+1;46 we can substitute
this solution into (23) for i = ` and obtain a difference equation in V`,t. We have thus obtained a recursive
representation in terms of the value V`,t. This difference equation can alternatively be expressed in terms of st,
since (24) implies a one-to-one correspondence. In our numerical evaluations, this difference equation behaves
in the same way as it does in the baseline case of Section 2, so that the same procedure described above for the
habit-formation economy can be used again here to compute the organizational equilibrium. Figure 7 plots
such an example for the transition function between st and st+1. When βL = 0, this economy becomes the
standard quasi-hyperbolic discounting example in our baseline analysis. When βL > 0, the dynamics needs to
be computed based on equations (23) and (24). In the end, the transitional dynamics are similar qualitatively.

Figure 7: Evolution of the Saving Rate in Jackson and Yariv (2014)

D Proofs of Section 3.3.

D.1 Proof of Proposition 3

Proof. Suppose first that {āt}∞t=0 is a sequence satisfying the three properties in the proposition. We construct
a subgame-perfect equilibrium strategy profile as follows.47 We start with σ0(∅) = ā0. Let h̃t, t ≥ 1 be an
arbitrary history whose predecessors are (∅, h̃0, h̃1, ...h̃t−1). If as = σs(h̃

s−1), s = 0, ..., t − 1, set σt(h̃t) = āt.
Otherwise, let t̃ := max{s : as 6= σs(h̃

s−1)} and set σt(h̃t) = āt−1−t̃. In words, this strategy punishes any
deviation by restarting the continuation equilibrium from the same equilibrium path that is supposed to prevail

46More precisely, the equation admits at most one solution, and may have none. However, since we know that an
organizational equilibrium exists, a solution has to exist for the appropriate range of values of V̄ and V`.

47We defined an organizational equilibrium within the context of the game of Section 3.1, so the proposition is proven
in the context of this game, although of course the results apply to the game of Section 3.2 when Assumption 4 is
satisfied.

12



in period 0. Properties 1 and 3 ensure that such a punishment is sufficient to deter deviations, both in the
initial period and in any subsequent period and history. This equilibrium is state independent (Requirement 1)
and symmetric, since the equilibrium path of play attains an action value V̄ independent of the past history.
No equilibrium can attain a higher constant value. Suppose such an equilibrium existed, and let {aBt }∞t=0 be its
equilibrium path, which attains a constant V B > V̄ . Then we would have V (aBt , a

B
t+1, ...) = V B > V̄ , ∀t ≥ 0,

which would contradict property 2 of our initial sequence. Therefore, the newly constructed subgame-perfect
equilibrium satisfies Requirement 2. Finally, Requirement 3 is a direct analog of the third property that we
imposed on the sequence.

Suppose now that a sequence satisfying the 3 properties of the proposition exists and its value is V̄ . Require-
ment 2 implies that all organizational equilibria feature a path of constant value V̄ as well, which implies that
they satisfy the first two properties; the third property follows directly from Requirement 3.

D.2 Proof of Proposition 4.

To prove this we rely on a useful lemma, which introduces a convenient way of representing equilibria through
their values, similarly to Abreu, Pierce, and Stacchetti’s (1986; 1990) method.48

Lemma 4. Let V ∗ ∈ R and V̂ ⊂ R be a value and a set of continuation values that satisfy the following
properties:

1.
∀a ∈ A ∃v̂ ∈ V̂ : Ṽ (a, v̂) ≤ V ∗;

2.
∀v ∈ V̂ ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) = V ∗ ∧W (a, v̂) = v.

3. There exists no value V ∗∗ > V ∗ and set ˆ̂V that satisfies properties 1 and 2; furthermore, there is no set
V̂a ⊃ V̂ that satisfies properties 1 and 2 together with V ∗.

Then:

• Construct an arbitrary sequence of actions {a∗t }∞t=0 recursively as follows. In period 0, pick v̂∗0 ∈ V̂
and (a∗0, v̂

∗
1) ∈ A × V̂ such that Ṽ (a∗0, v̂

∗
1) = V ∗ and W (a∗0, v̂

∗
1) = v̂∗0 . In each subsequent period, pick

(a∗t , v̂
∗
t+1) ∈ A × V̂ such that Ṽ (a∗t , v̂

∗
t+1) = V ∗ and W (a∗t , v̂

∗
t+1) = v̂∗t . Constructing such a sequence is

possible by the definition of V ∗ and V̂. The sequence so constructed is the outcome of a reconsideration-
proof equilibrium;

48Note, however, that we cannot adopt their method to recursively compute the desired sets. Given V ∗, V̂ can be
computed recursively as in Abreu, Pierce, and Stacchetti. However, without further assumptions the set of values of
V ∗ for which V̂ is defined need not be convex, which makes finding its maximum difficult.
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• If {a∗t }∞t=0 is the equilibrium path of a reconsideration-proof equilibrium, Ṽ (a∗0, a
∗
1, ...) = V ∗ and V̂ (a∗t , a

∗
t+1, ...) ∈

V̂ for any t > 0.

Proof.

First, we prove that the recursively-constructed sequence {a∗t }∞t=0 satisfies

Ṽ (a∗t , V̂ (a∗t+1, a
∗
t+2, ...)) = V ∗ ∀t ≥ 0 (25)

and
V̂ (a∗t , a

∗
t+1, a

∗
t+2, ...) ∈ V̂ ∀t ≥ 0. (26)

Note that, if v̂∗T = V̂ (a∗T , a
∗
T+1, a

∗
T+2, ...) for some period T , iterating backwards we find that v̂∗t = V̂ (a∗t , a

∗
t+1, a

∗
t+2, ...)

for all t < T , so that equations (25) and (26) hold.

Define
{at}∞t=0 ∈ arg min

{at}∞t=0

V̂ (a0, a1, ...)

and similarly let {āt}∞t=0 be a sequence that attains the maximum. Both exist by the compactness of A and
the continuity of V̂ (in the product topology).

Next, truncate the sequence {a∗t }∞t=0 at time S > T and replace the continuation with {at}∞t=0 or {āt}∞t=0. By
Assumption 5 and the monotonicity of W , we have

V̂ (a∗T , a
∗
T+1, ..., a

∗
S , a0, a1, ...) ≤ V̂ (a∗T , a

∗
T+1, ..., a

∗
S , a
∗
S+1, a

∗
S+2, ...) ≤ V̂ (a∗T , a

∗
T+1, ..., a

∗
S , ā0, ā1, ...) (27)

and

V̂ (a∗T , a
∗
T+1, ..., a

∗
S , a0, a1, ...) = W (a∗T ,W (a∗T+1, ...W (a∗S ,W (a0,W (a1, ...)...))...)) ≤

W (a∗T ,W (a∗T+1, ...W (a∗S , v̂
∗
S)...)) = v̂∗T ≤

W (a∗T ,W (a∗T+1, ...W (a∗S ,W (ā0,W (ā1, ...)...))...)) = V̂ (a∗T , a
∗
T+1, ..., a

∗
S , ā0, ā1, ...).

(28)

Taking limits as S →∞ in equations (27) and (28) and exploiting the continuity of V̂ according to the product
topology, the left-most and right-most expressions in the inequalities converge to the same value, which then
implies that indeed v̂∗T = V̂ (a∗T+1, a

∗
T+2, a

∗
T+3, ...) and (25) and (26) hold.

To complete the proof of the first point, we need to show that there exists no symmetric subgame-perfect equi-
librium whose payoff is strictly greater than V ∗. By contradiction, suppose that there is such an equilibrium
with value V ∗∗ > V ∗. Let σ∗∗ be the strategy profile representing one such equilibrium. Define

V̂b := {v : v = V̂ (a∗∗t+1|ht , a∗∗t+2|ht , a∗∗t+3|ht , ...), ht ∈ At},

where {a∗∗s |ht}∞s=t+1 is the equilibrium path implied by the strategy profile σ∗∗ following a history ht. The
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pair (V ∗∗, V̂b) satisfies property 1 in the lemma, since otherwise σ∗∗0 would not be optimal at time 0. It also
satisfies property 2 since σ∗∗ is symmetric and by the definition of V̂b. But then this implies that property 3
in the lemma does not hold for V ∗, establishing a contradiction.

In the previous point we proved that, given V ∗ and V̂, we can construct a reconsideration-proof equilibrium
of value V ∗. Since all reconsideration-proof equilibria must have the same value, it must be the case that
Ṽ (a∗0, a

∗
1, ...) = V ∗. Furthermore, repeating the steps of the previous point, we can prove that the value V ∗

and the set
V̂a := {v : v = V̂ (a∗t+1|ht , a∗t+2|ht , a∗t+3|ht , ...), ht ∈ At}

satisfy properties 1 and 2. By the definition of V̂, it follows that V̂a ⊆ V̂.

While not essential for the proof of Proposition 4, the following lemma is useful for computations:

Lemma 5. The set V̂ defined in Lemma 4 is convex.49

Proof. We first define the set V̂c by relaxing property 2 in Lemma 4 to be the following:

∀v ∈ V̂c ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v. (29)

We will later prove that V̂c = V̂.

Simple case. First, if V̂c is a singleton, then it is necessarily convex and V̂c = V̂: by property 3 of Lemma 4,
V ∗ should be raised until Ṽ (a, v̂) = V ∗ at the single element v̂ ∈ V̂c, with no effect on property 2 and relaxing
the constraint in property 1.

From now on, we study the case in which V̂c contains at least two values.

Step 1. To prove that V̂c is convex, we prove that its convex hull, Co(V̂c), satisfies properties 1 and 2 as well
(and of course Co(V̂c) ⊃ V̂c unless V̂c is convex as well). Property 1 is immediate from the monotonicity of Ṽ .
Let v1, v2 ∈ V̂c, and let (a1, v̂1), (a2, v̂2) elements of A×V̂c be two pairs of actions and continuation values that
satisfy property 2 of Lemma 4. Consider their convex combination (αv1 +(1−α)v2, αv̂1 +(1−α)v̂2), α ∈ [0, 1].
Since Ṽ is continuous and quasiconcave and W is continuous, Ṽ (αv1 + (1− α)v2, αv̂1 + (1− α)v̂2) ≥ V ∗, and
W (αv1 + (1 − α)v2, αv̂1 + (1 − α)v̂2) takes all values in [v1, v2] as α varies between 0 and 1. Hence, all
intermediate values satisfy property 2 as well, which completes the proof that Co(V̂c) satisfies property 2.

Step 2. To prove that V̂c = V̂, proceed as follows. Define vc := min{V̂c} and v̄c := max{V̂c}.50 By definition,
we can find (a, v̂) and (ā, ¯̂v) such that

Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v

49Lemma 4 defines a unique set, since the union of all sets satisfying properties 1 and 2 satisfies properties 1 and 2
as well.

50It is straightforward to prove that V̂c is closed, by the continuity of the functions defining it.
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and
Ṽ (ā, ¯̂v) ≥ V ∗ ∧W (ā, ¯̂v) = v̄.

Since A is convex, we can construct within it a line from a to ā by defining a(α) := αa+ (1− α)ā, α ∈ [0, 1].
By the quasiconcavity of Ṽ , we know

Ṽ (a(α), αv̂ + (1− α)¯̂v) ≥ V ∗.

By property 1 of Lemma 4, for each action a(α) and the monotonicity and continuity of Ṽ we have

Ṽ (a(α), v) ≤ V ∗.

Since V̂c is convex, we can find a (unique) value v̂(α) such that

Ṽ (a(α), v̂(α)) = V ∗.

Monotonicity and continuity of Ṽ imply that v̂(α) is a continuous function. It then follows that V̂ (a(α), v̂(α))

is a continuous function of α. As α ∈ [0, 1], this function must take all values between v and v̄, proving that
the property 2 of Lemma 4 is satisfied by V̂c and thus V̂c = V̂.

We are now ready to prove Proposition 4.

Proof. The second property of the value V ∗ and the set V̂ in Lemma 4 implies that we can construct a
function g : V̂ → R × V̂ with the property that Ṽ (g(v)) = V ∗ and W (g(v)) = v. Starting from any value
v0 ∈ V̂, we can construct recursively a path (at, vt+1) = g(vt). By Lemma 4, this is the equilibrium path of a
reconsideration-proof equilibrium. It will thus be an organizational equilibrium provided that

V (at, vt+1) ≥ max
a

Ṽ (a, v0) ∀t.

By the definition of V, this property is satisfied by its least element, v;51 hence, it will be satisfied provided
that the initial value v0 is sufficiently low.

D.3 Proof of Proposition 5

Proof. Define a correspondence ζ : R×R⇒ R as follows:

v ∈ ζ(v′, v∗)⇐⇒ ∃a ∈ A :

Ṽ (a, v′) = v∗

W (a, v′) = v.
(30)

51By the monotonicity of Ṽ in its second argument and the property 1 of V, Ṽ (a, v) ≤ V ∗ for all a ∈ A.
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In words, given (v∗, v′), v belongs to the correspondence if there is an action a which, together with a
continuation value v′, yields utility v∗ when evaluated according to the decision maker’s preferences (Ṽ ) and
utility v when evaluated with its continuation utility function W .

We prove that there exists a value v∗ for which ζ is nonempty and admits a fixed point in continuation utilities
(v = v′). We do so by proving that a Markov equilibium (aM , vM ) exists, such that

v∗ = Ṽ (aM , vM ) = max
a

Ṽ (a, vM ) (31)

and
vM = W (aM , vM ). (32)

To prove the existence of a Markov equilibrium, we construct a correspondence â(.) from A into itself by
setting

â(a) = max
a0∈A

V̂ (a0, a, a, a, ...).

By the usual compactness and continuity properties, this correspondence is nonempty, compact-valued, and
upper hemicontinuous. Quasiconcavity of V̂ ensures that it is also convex-valued. Hence, the correspondence
has a fixed point by Kakutani’s theorem; let aM be one such fixed point. Given Assumption 5, letting
vM := V̂ (aM , aM , aM , ...), equations (31) and (32) are satisfied.

We thus know vM ∈ ζ(vM , Ṽ (aM , vM )). Once again, our assumptions about compactness and continuity
imply that the correspondence ζ is upper hemicontinuous. Let V ∗ be the maximal value for which ζ admits
a fixed point in continuation utilities. In the proofs below, it is useful to establish that

v ∈ ζ(v′, V ∗) =⇒ v ≤ v′. (33)

Suppose (33) is not satisfied. Let (a, v′) be such that V (a, v′) = V ∗ and W (a, v′) > v′. Holding the action
a fixed, continuity and monotonicity imply that higher values of v′ lead to higher values of V (a, v′) and
W (a, v′). As long as W (a, v′) > v′, we know that v′ < max{at}∞t=0

V̂ (a0, a1, ...) and can thus be raised further.
Eventually, we will attain a value vh > v′ for which W (a, vh) = vh (this has to happen, since W (a, v′) is
bounded by the maximum above). Let V h := V (a, vh) > V ∗. We just established that a fixed point of ζ(., V h)

exists, which contradicts the assumption that V ∗ is the highest value for which a fixed point can be found.

In our next step, we prove that there are no symmetric equilibria with value V ∗∗ > V ∗. By the definition of V ∗,
given any combination of an action and a continuation utility (a, v′), if Ṽ (a, v′) = V ∗∗ thenW (a, v′) < v′. This
implies that any equilibrium path with value V ∗∗ would feature a strictly increasing sequence of continuation
values; convergence is ruled out, because continuity and compactness would imply that the limiting point
would be a fixed point of ζ, which is inconsistent with V ∗∗ > V ∗. Since the set of possible continuation values
is bounded by

max
{at}∞t=0

V̂ (a0, a1, . . .),

no such equilibrium path can exist.
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We now prove that there exist symmetric equilibria with value V ∗, which then implies that any such equilibrium
is reconsideration proof. Let vSS be the maximal fixed point of ζ(., V ∗). For any continuation value v > vSS ,
a repetition of the arguments described above for V ∗∗ imply that no equilibrium path would be possible.52

We prove instead that there exists a convex set V = [v`, v
SS ] which, together with V ∗, satisfies the properties

of Lemma 4, where
v` := min

v′≤vSS
min ζ(v′, V ∗). (34)

To do so, prove first that, for any action a ∈ A, Ṽ (a,min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗. By contradiction, suppose

that an action aL such that Ṽ (aL,min{at}∞t=0
V̂ (a0, a1, ...)) > V ∗ existed. We could then repeat the same steps

used to prove (33) and construct a steady state with value higher than V ∗.

Since Ṽ (a,min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗ ∀a ∈ A, we can define

v′min := min
(a,v′)

v′ := Ṽ (a, v′) = V ∗.

Since there exists an action aSS such that V (aSS , vSS) = V ∗, v′min ≤ vSS . Also, by equations (33) and (34),
v` ≤ v′min. Hence, Ṽ (a, v`) ≤ V ∗ ∀a ∈ A: Property 1 of Lemma 4 is satisfied by the value V ∗ and the
continuation set [v`, v

SS ]. To prove Property 2, let a` and v′` be such that W (a`, v
′
`) = v` and Ṽ (a`, v

′
`) = V ∗,

and λ ∈ [0, 1].53 As we just established, Ṽ (λa` + (1 − λ)aSS , v`) ≤ V ∗. By quasiconcavity, Ṽ (λa` + (1 −
λ)aSS , λv′` + (1 − λ)vSS) ≥ V ∗. Strict monotonicity implies that there exists a unique value vλ such that
Ṽ (λaSS + (1 − λ)a`, vλ) = V ∗, which must vary continuously with λ by the continuity of Ṽ . It follows that
W (λaSS + (1−λ)a`, vλ) is a continuous function of λ and it takes all values between v` and vSS , proving that
Property 2 of Lemma 4 holds. Finally, from equations (33) and (34), we know that any value v 6∈ [v`, v

SS ]

could only be attained by some action a with a continuation value v′ > vSS , which would lead to nonexistence
in subsequent periods. Hence, [v`, v

SS ] is the largest set that satisfies Properties 1 and 2 of Lemma 4 together
with the value V ∗, completing the proof that a reconsideration-proof equilibrium has value V ∗, and thus that
in turn the organizational equilibrium with the state variable is also associated with an action value V ∗. Our
construction also proved that V ∗ is the maximal action payoff that can be attained by a constant action.

Finally, suppose that V̂ is strictly quasiconcave. Let aSS be the unique action that attains maxa V (a, a, a, ...).
If this steady state is not a Markov equilibrium, then aSS < maxa Ṽ (a, vSS). In this case, a sequence that
starts at aSS and stays constant violates the no-delay condition.

Finally, we prove part 2 of the proposition. The Ramsey outcome is the allocation that attains the highest
payoff, and so by definition an organizational equilibrium cannot do better. If there is no constant allocation
that attains the Ramsey outcome, then it means that the best constant allocation attains a payoff strictly
smaller than Ramsey; Proposition 5 proves that the payoff of an organizational equilibrium coincides with that
of the best constant allocation, and is thus strictly worse than Ramsey as well. When a constant allocation

52If along the equilibrium path, for some T ≥ 0, vT > vSS , then vt > vSS for all t > T . Since {vt} is bounded and
monotonically increasing, the limiting point will be a fixed point of ζ, which is incompatible with vSS being the largest
fixed point.

53We have v` ≤ v′` ≤ vSS by (33) and (34).
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aSS attains the Ramsey outcome, it must be the case that

aSS ∈ argmax
a

V (a, aSS , aSS , ...);

this implies that (aSS , aSS , aSS , ...) is also a Markov equilibrium, and that aSS achieves the highest payoff
among constant allocations, which (by Proposition 5) is also the payoff of an organizational equilibrium. In
particular, (aSS , aSS , ...) is an organizational equilibrium.

A state-independent Markov equilibrium cannot depend on the past nor on calendar time, and so it is a
constant sequence (a, a, ...). An organizational equilibrium attains the same payoff as the best constant
allocation; hence, it can be no worse than the best Markov equilibrium, and is strictly better whenever the
best constant allocations do not correspond to a Markov equilibrium.

D.4 Proof of Corollary 1

Proof. This proof follows closely that of Proposition 5. Let ζ, V ∗, v`, and vSS be defined as in that proof.
The proof of Proposition 5 rules out symmetric equilibria with values higher than V ∗ by showing that there
does not exist a sequence of actions that has a constant value higher than V ∗. It also shows how to construct
a sequence such that Ṽ (a0, V̂ (a1, a2, ...)) = V ∗ and V̂ (a0, a1, ...) = v for any value in v ∈ [v`, v

SS ]; any such
sequence satisfies properties 1 and 2 of Proposition 3. Let {āt}∞t=0 be such that Ṽ (ā0, V̂ (ā1, ā2, ...)) = V ∗

and V̂ (ā0, ā1, ...) = v`. The proof of Proposition 5 establishes that Ṽ (a, v`) ≤ V ∗ ∀a ∈ A. Hence, {āt}∞t=0

satisfies Property 3 of Proposition 3 as well.

E Proofs for Section 3.4

In this appendix, we establish that the slope of the transition function in the organizational equilibrium equals
to 1 when approaching to the steady state and equals to 0 when starting at the saving rate in the Markov
equilibrium. Furthermore, the slope is positive between the steady state and the Markov saving rate.

Given the transition function (13), the slope of it can be expressed as

∂st+1

∂st
= − exp

{
−(1− β)V ∗ + δαβ

1−αβ log st + log(1− st)
β(1− δ)

}(
δαβ

1−αβ
1
st
− 1

1−st
β(1− δ)

)
.

With a constant saving rate s, the lifetime action payoff is

(1− β)V =
δαβ

1− αβ
log s+ log(1− s)− β(1− δ) log(1− s).
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The optimal constant saving rate s∗ satisfies

δαβ

1− αβ
1

s∗
− 1

1− s∗
− β(1− δ)

1− s∗
= 0,

and the action payoff V ∗ satisfies

(1− β)V ∗ =
δαβ

1− αβ
log s∗ + log(1− s∗)− β(1− δ) log(1− s∗).

Therefore, we have

∂st+1

∂st

∣∣∣∣
st=s∗

= − exp

{
−(1− β)V ∗ + δαβ

1−αβ log s∗ + log(1− s∗)
β(1− δ)

}(
δαβ

1−αβ
1
s∗ −

1
1−s∗

β(1− δ)

)

= −(1− s∗)

(
δαβ

1−αβ
1
s∗ −

1
1−s∗

β(1− δ)

)
= 1

In the Markov equilibrium, the saving rate sM maximizes the part involving only the current saving rate:

δαβ

1− αβ
log s+ log(1− s),

which implies that
δαβ

1− αβ
1

sM
− 1

1− sM
= 0.

As a result, ∂st+1

∂st

∣∣∣∣
st=sM

= 0.

Denote χ(st) ≡ δαβ
1−αβ

1
st
− 1

1−st . Notice that: (1) χ(st) is decreasing in st when st ∈ (0, 1); (2) χ(st) = 0 when
st = sM . It follows that, ∂st+1

∂st
> 0 when st > sM .

F Example of Approximating Strategy

As an example to illustrate the approximating strategy, we revisit the quasi-geometric discounting economy
with partial depreciation and CRRA utility function and apply our approximation strategy. Compared with
the environment in Section 2, we modify the period utility function and the law of motion to be

u(c) =
c1−σ

1− σ
, kt+1 = f(kt)− ct + (1− d)kt,

where d ∈ (0, 1).
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Let st denote the saving rate. Mapping to the general setup, we have

P (k, s) = u((1− s)f(k)),

Q(k, s) = β(δ − 1)u((1− s)f(k)),

F (k, s) = sf(k) + (1− d)k.

In this economy, the action st and the states kt are not separable. To proceed, we choose m(s) = s1−σ

1−σ to
approximate the utility function and g(s) = log(1− s) to approximate the technology. In this approximating
economy, the organizational equilibrium can be constructed.

The blue solid line in Figure displays the transition paths of the capital shock and the saving rate of the
organizational equilibrium in this approximating economy. The red dashed line and the black broken line
correspond to the Markov equilibrium and the Ramsey outcome in the approximating economy. Similar
to our baseline analysis, the organizational equilibrium gradually transits from being close to the Markov
equilibrium towards being close to the Ramsey outcome.54

To evaluate this approximation, we also compute the the Markov equilibrium and the Ramsey outcome in the
original economy via global solutions, which are shown by the lines with circle markers. The outcomes in the
approximating economy and the original economy are close to each other not only in the steady states but
also along the entire transition paths.

Figure 8: Transition Paths in Approximating Economy
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Note: The dotted lines in red and black represent the true solutions to the Markov equilibrium and the
Ramsey outcome, respectively. The dashed lines in red and black represent the solutions in the approximating
economy according to our strategy.

54We set β = 0.8, δ = 0.9, d = 0.5, σ = 2, α = 0.36.
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G Organizational Equilibrium in Policy Problems

In Section 3, there is one player for each period. Here, the policymaker is still represented by one player
for each period, but we also include a continuum of identical households that face a dynamic problem.55 In
this appendix, we describe explicitly the strategic interaction between the government and the households at
different points in time. The game unfolds as follows. In each period, the government in power takes an action
a ∈ A first. Then, the households move simultaneously. Each household takes an action s ∈ S. The aggregate
state for next period evolves according to k′ = F (k, a, s). A full description would require us to specify what
happens when households take different actions, so that, while they are identical ex ante, they may end up
being different ex post. However, in most of the applications that are of interest, the household optimization
problem has a unique solution. Hence, there can be no equilibrium in which identical households take different
actions. Moreover, a deviation by a single household has no effect on aggregates. We exploit these properties
and specify the evolution of the economy and preferences only after histories in which (almost) all households
have taken the same action. Starting from an arbitrary period t and state kt, household preferences are given
by a function

Z(kt, {av, sv, s−v }∞v=t), (35)

where sv represents the action taken by the individual household, and s−v is the action taken by (almost) all
other households. We assume that S is a convex compact subset of a locally convex topological linear space
and that Z is jointly continuous in all of its arguments (in the product topology), strictly quasiconcave in the
own action sequence {sv}∞v=t, and weakly separable between the state and the remaining arguments. We also
assume that household preferences are time consistent. More precisely, we assume that, given an initial level
of the state kt and a sequence of other households’ actions {av, sv}∞v=t,

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t) =⇒ Z(F (kt, at, st), {av, sv, sv}∞v=t+1) =

max
{s̃v}∞v=t+1

Z(kt, {av, s̃v, sv}∞v=t+1).
(36)

Equation (36) states that, if it is optimal from period t to follow the same sequence of actions that all other
households are taking, then it is also optimal to follow that sequence in subsequent periods, as long as other
households also continue to do the same. Notice that we exploit the fact that each household has no effect
on the aggregates to leave the continuation preferences over several histories unspecified; this is convenient,
because it prevents us from having to explicitly introduce individual state variables. To be concrete, consider
the taxation game to which we apply this general definition; in that game, st is the individual saving rate.
Equation (36) is written from the perspective of a household that starts with the same level of kt as the
aggregate, which allows us not to draw a distinction between the two. If that household finds it optimal to
follow the same saving rate as all other households, then it will optimally choose to have the same level of
kt+1, and equation (36) ensures that the continuation plan will remain optimal from period t+ 1 onwards. If
instead the household chooses a different saving rate from others, then it would potentially enter period t+ 1

with a different level of the state from the aggregate; however, whenever this choice does not maximize (35),

55The notion of an equilibrium can be readily extended to environments with finite types of households or to economies
with overlapping generations. Extending organizational equilibrium to economies with a continuum of types could be
done by interacting the analysis here with distributional notions of equilibrium as in Jovanovic and Rosenthal (1988).
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we know this would not be an optimal individual choice without need to specify the entire continuation path;
moreover, the individual deviation does not affect aggregate incentives; hence, we do not need to keep track
of it for the purpose of computing other households’ best response either.

We define a competitive equilibrium from period t and a state kt as a sequence {av, sv}∞v=t, such that

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t).

Proposition 7. Given any sequence of policy actions {av}∞v=t, a competitive equilibrium exists.

Proof. Fix kt and {av}∞v=t. Given our assumptions on S and Z, the best-response function

br({sv}∞v=0) := arg max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t)

is well defined and continuous. By Brouwer’s theorem, it admits a fixed point, which is a competitive equilib-
rium.

Equation (36) ensures that the continuation of a competitive equilibrium is a competitive equilibrium itself.
Also, the separability assumption about Z implies that, if {av, sv}∞v=t is a competitive equilibrium from a state
kt, then it is also a competitive equilibrium from any other state k′t.

In what follows, we proceed by assuming that the competitive equilibrium is unique given a sequence of policy
actions, which can be verified in each specific application.56

At time t, government preferences are given by a function Ψg(kt, at, st, at+1, st+1, at+2, st+2, . . .). We assume
that this function is also weakly separable in kt and its other arguments. For each given sequence of govern-
ment actions {as}∞s=t, a unique competitive equilibrium exists. The resulting sequence of private sector actions
is given by a sequence {ss}∞s=t, which is independent of kt, since household preferences are also separable in
kt. We thus specify the government utility from its sequence of actions as that experienced in the competitive
equilibrium associated with those actions. With this specification, government preferences can be represented
as in equation (8), and an organizational equilibrium can be defined in the same way as in Section 2. Existence
of an organizational equilibrium is guaranteed by Proposition 1 when Assumptions 2 and 3 hold. However,
these assumptions are significantly more restrictive in tax applications. As is well known, optimal tax problems
frequently feature nonconvexities, in which case existence may have to be established in the specific applica-
tion, as we do in our examples. Moreover, anticipation effects from the competitive equilibrium imply that
Assumption 3 often does not hold either. It is worth noting that this assumption can be weakened. Its central
role in our proof of Proposition 1 is to establish that the continuation sequence (aĒt+1, a

Ē
t+2, . . .) in equation

(20) can be made independent of the current deviation a. In our policy applications, we prove this result

56Non-uniqueness can be accommodated by assuming a selection rule on how households coordinate when multiple
equilibria are possible, as long as this rule has the properties that the continuation of a selected competitive equilibrium
is selected itself as a continuation competitive equilibrium and that the selection is continuous.
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by showing instead that the static best-response arg maxa V (a, a0, a1, a2, ...) is independent of the sequence
{at}∞t=0: hence, any continuation which deters deviation to this action will also be sufficient to deter deviation
to any other choice.

As we did for the simpler case of Section 3, we relate an organizational equilibrium to a strategic notion of
equilibrium. To do so, we need to keep track of histories of play. A symmetric history of play is a record of all
actions taken in the past; we distinguish between histories at which the government is called to play, which
are given by h0 := ∅ and

ht := (a0, s0, a1, s1, ..., at−1, st−1), t > 0,

and histories at which households are called to play, that take the form of hp,0 := a0 and

hp,t := (a0, s0, a1, s1, ..., at−1, st−1, at), t > 0.

Let H be the set of histories at which the government is called to play, and Hp the set of histories at which
households are called to play. For the reasons discussed above, we only keep track of histories in which almost
all households have taken the same action.

A strategy for the households is a mapping σp : Hp → S; likewise, a government strategy is a mapping
σ : H → A. A symmetric strategy profile is a pair (σp, σ), representing how all households and the government
will act following any symmetric history; it recursively induces a path of play {at, st}∞t=0.

A symmetric strategy profile (σp, σ) is a sequential equilibrium if the following is true:

• Given that the government will follow σ and other households will follow σp, the actions dictated by σp

are optimal for each household. After any history hp,t, each household takes as given the government
policy action at and the initial state kt, which is recursively determined by the history of past play.
Moreover, the strategy σp followed by other households and the government strategy σ determine the
future path of aggregate play, {sv, av+1}∞v=t. Household optimality requires that the sequence of actions
prescribed by σp is optimal along this path: equivalently stated, it requires the actions prescribed by
σp to be a competitive equilibrium from period t on, following any arbitrary (symmetric) history.

• Given that households will follow the strategy σp and that future governments will follow the strategy
σ, and given any past history ht, the current government choice σ(ht) is optimal.

Proposition 8. Given any organizational equilibrium, there exists a sequential equilibrium whose outcome
coincides with the organizational equilibrium.

Proof. Let (a∗0, a
∗
1, a
∗
2, ...) be an organizational equilibrium, and let (s∗0, s

∗
1, ...) be the competitive-equilibrium

associated with it. We construct a strategy profile recursively as follows:

• σ(∅) = a∗0;

• For any t > 0 and any history ht = (a0, ..., at−1) such that as = a∗s ∀s = 0, ..., t− 1, σ(ht) = a∗t ;
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• For any t > 0 and any history ht = (a0, ..., at−1) such that ∃s : as 6= a∗s, define T := max{s < t : as 6=
σ(a0, ...as−1)} and set σ(ht) = a∗t−1−T .

• For any history hpt = (a0, s0, a1, s1, ..., at−1, st−1, at) at which households are called to play, let {aes}∞s=t+1

be the sequence of government actions that follow from period t+1 if the government plays the continu-
ation of the strategy σ defined above following (a0, ..., at). Set σp(h

p
t ) to be the competitive equilibrium

that is associated with (at, a
e
t+1, a

e
t+2, ...), which exists and is unique by assumption.

By construction, the household strategy satisfies the second condition for a sequential equilibrium for any
history of play. For the government, following any history, the strategy prescribes to play the organizational
equilibrium sequence, either from its beginning or from some element a∗t , t > 0. Should the government
deviate from its strategy, the continuation strategy restarts the organizational equilibrium sequence from a∗0.
By the definition of an organizational equilibrium, continuing along the sequence is always weakly preferred
to playing the best one-shot deviation followed by a restart; hence, the government optimality condition is
satisfied and the strategy above describes a sequential equilibrium.

H Details for Section 4

We first provide the details on the separable property of the model environment. Recall that the law of motion
of the stock of carbon is given by

q1t = q1t−1 + ϕLet,

q2t = ϕq2t−1 + (1− ϕL)ϕ0et.

It follows that

q1t = q1,−1 + ϕLA

t∑
j=0

(1− nj),

q2t = ϕtq2,−1 + (1− ϕL)ϕ0A

t∑
j=0

ϕt−j(1− nj),

qt = q1t + q2t = q1,−1 + ϕtq2,−1 +A

t∑
j=0

(ϕL + (1− ϕL)ϕ0ϕ
t−j)(1− nj).

Given a sequence of {st} and {nt}, it implies that

log ct = log(1− st)− γqt + α log kt + (1− α− ν) log nt + ν log(A(1− nt))

= log(1− st)− γ

q1,−1 + ϕtq2,−1 +A

t∑
j=0

(ϕL + (1− ϕL)ϕ0ϕ
t−j)(1− nj)


+ α log kt + (1− α− ν) log nt + ν log(1− nt) + ν logA
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Turn to the part involving the saving rates. The sequence of capital is

log kt = αt log k0 +

t−1∑
j=0

αt−j−1 log sj

The lifetime utility is therefore separable between initial states (q1,−1, q2,−1, k0) and the sequence of labor and
saving rates

U0 = log c0 + δ

∞∑
j=1

βj log ct+j

=G(k0, q1,−1, q2,−1) +W (s0, s1, . . .) + V (n0, n1, . . .).

Here, W (s0, s1, . . .) captures the impact of saving rates. Using the expression for log ct and log kt, we have

W (s0, s1, . . .) = log(1− s0) +
δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βj
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
,

which is similar to the baseline quasi-geometric discounting model.

Next, consider the part involving the labor choice.

V (n0, n1, . . .)

=(1− α− ν) log n0 + ν log(1− n0)− γA
(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n0)

+ δβ

−γA( ϕL
1− β

+
ϕ0(1− ϕL)

1− βϕ

) ∞∑
j=0

βj(1− nj+1) + (1− α− ν)

∞∑
j=0

βj log nj+1 + ν

∞∑
j=0

βj log(1− nj+1)


=(1− α− ν) log n0 + ν log(1− n0)− γA

(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n0)

− β(1− δ)
(

(1− α− ν) log n1 + ν log(1− n1)− γA (ϕL + (1− ϕL)ϕ0) (1− n1)

)
+ βV (n1, n2, . . .).

Characterization of steady state The organizational equilibrium requires that V (n0, n1, . . .) = V (n1, n2, . . .) =

V , which leads to

−γA
(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n0) + (1− α− ν) log n0 + ν log(1− n0)

= β(1− δ)
(

(1− α− ν) log n1 + ν log(1− n1)− γA (ϕL + (1− ϕL)ϕ0) (1− n1)

)
+ (1− β)V .
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In the steady state, the best constant action maximizes the following object

nO = argmax
n

−γA
(
ϕL

(
1− β + δβ

1− β
− β(1− δ)

)
+ (1− ϕL)ϕ0

(
1− ϕβ + δϕβ

1− ϕβ
− β(1− δ)

))
(1− n)

+ (1− α− ν)(1− β(1− δ)) log n+ ν(1− β(1− δ)) log(1− n).

The first-order condition implies

ΛO + (1− α− ν)
1

A

1

nO
= ν

1

A

1

1− nO
,

where ΛO in the organizational equilibrium is given by

ΛO ≡ γ
(
ϕL

(
1 +

δβ

(1− β)(1− β(1− δ))

)
+ (1− ϕL)ϕ0

(
1 +

δϕβ

(1− ϕβ)(1− β(1− δ))

))
.

When δ = 1, the steady-state policy reconciles with the outcome characterized in Golosov et al. (2014), which
corresponds to the Ramsey outcome in the long-run

ΛR ≡ γ
(
ϕL

1

1− β
+ (1− ϕL)ϕ0

1

1− ϕβ

)
.

The allocation of labor in the Markov equilibrium solves the action payoff taken future labor choice as given

nM = argmax−γA
(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
(1− n) + (1− α− ν) log n+ ν log(1− n).

The implied tax is

ΛM = γ

(
ϕL

1− β + δβ

1− β
+ (1− ϕL)ϕ0

1− ϕβ + δϕβ

1− ϕβ

)
.

I Details for Section 5

Static equilibrium Recall that the final goods is an aggregator of the two intermediate goods

yt =
[
0.51−ρmρ

1t + 0.51−ρmρ
2t

] ρ−1
ρ .

The aggregate price index Pt is given by

Pt =
[
0.5p

ρ
ρ−1

1t + 0.5
] ρ−1

ρ
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. The demand schedules for goods 1 and 2 satisfy

m1t =
1

2

(
p1t

Pt

) 1
ρ−1

yt, m2t =
1

2

(
1

Pt

) 1
ρ−1

yt,

The production functions in the two sectors are given by

y1t = AL1−α
1t kα1tk

1−α
t , and y1t = L1−α

2t kα1tk
1−α
t .

We impose fixed labor input in the two sectors, i.e., L1t = L2t = 1.

Denote the tariff rate as τt. In the home country, the price of goods 2 is 1 by normalization. Therefore,
the price of goods 2 at the foreign country is 1

1+τt
due to the law of one price and the symmetric tariff rate

assumption. Again, by symmetry, the price of goods 1 in country 1 is also p1t = 1
1+τt

. That is, a higher
tariff rate lowers the more productive sector’s relative price. It also implies that there is a one-to-one mapping
between the tariff rate τt and the goods 1 price p1t.

Since capital is free to flow across sectors, the return to capital is equalized across the two sectors

p1tAk
α−1
1t k1−α

t = kα−1
2t k1−α

t

which leads to
k2t = φtkt where φt =

1

1 + (p1tA)
1

1−α
.

It also follows that the output in the two sectors are given by

y1t = A(1− φt)αkt, y2t = φαt kt,

and the nominal GDP in country 1 can be expressed as

vt = p1tAk
α
1tk

1−α
t + kα2tk

1−α
t = kt(p1tA(1− φt)α + φαt )) = ktφ

α−1
t .

The total expenditure and the nominal GDP is identical, which implies that

vt = Ptyt = p1tm1t +m2t,

where the total usage of goods 1 and 2 follows from the demand schedule

m1t =
1

2

(
p1t

Pt

) 1
ρ−1 vt
Pt
, m2t =

1

2

(
1

Pt

) 1
ρ−1 vt
Pt
.

By symmetry, the terms of the trade is 1 in equilibrium. Denote the tariff revenue as R, which can be derived
as

Rt = (m2t − y2t)

(
1

p1t
− 1

)
= ktφ

α
t

(
1

φt

1

2
P−

ρ
ρ−1

t − 1

)(
1

p1t
− 1

)
.

Under the assumption that the tariff revenue is equally split between the two groups of workers, the consump-
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tion of workers in industry 1 and 2 are

c1t =
1
2Rt + w1t

Pt
=

1
2Rt + (1− α)p1tA(1− φt)αkt

Pt
= χ1(τt)kt, (37)

c2t =
1
2Rt + w2t

Pt
=

1
2Rt + (1− α)φαt kt

Pt
= χ2(τt)kt, (38)

where p1t, Pt, φt are all functions of τt.

Capitalists The real return to capital is

r(τt) =
αkα−1

2t k1−α
t

Pt
=
αφα−1

t

Pt
.

The problem of capitalists can be written as

max

∞∑
t=0

βt
c1−σt

1− σ

subject to
ct + kt+1 = (r(τt) + 1− δ)kt.

The Euler equation is
c−σt = β(r(τt+1) + 1− δ)c−σt+1.

Denote st as the saving rate, the Euler equation can be expressed as(
1− st
st

)−σ
= β (r(τt+1) + 1− δ)1−σ

(1− st+1)
−σ

.

Meanwhile, given a sequence of saving rates and tariff rates, the capital evolution satisfies

kt =

t−1∏
j=0

sj (r(τj)− δ) k0.

Welfare Suppose the policy maker’s preference is to maximize

U =

∞∑
t=0

βt
(
λ log c1t + (1− λ) log c2t

)

Define
χ(τ) = λ logχ1 (τ) + (1− λ) logχ2 (τ) ,

where χ1(·) and χ2(·) are defined in equation (37) and (38).
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The total welfare is separable between capital and the trade policy

U =
1

1− β
log k0 +

∞∑
t=0

βtχ(τt) +
β

1− β

∞∑
t=0

βt(log st + log(r(τt) + 1− δ)).

Markov Equilibrium The policy maker in the Markov equilibrium takes future tariff rates as given and
simply maximizes the following object

χ(τ) +
β

1− β
log(r(τ) + 1− δ)

which yields a constant tariff. Note that the impact of tariff on the saving rate is not taken into account.

Organization Equilibrium The steady-state allocation in the organizational equilibrium satisfies

max
s,τ

χ(τ) +
β

1− β
log(r(τ) + 1− δ) +

β

1− β
log s

subject to (
1− s
s

)−σ
= β (r(τ) + 1− δ)1−σ

(1− s)−σ

With σ < 1, the saving rate is decreasing in τ , which gives the policy maker a larger incentive to lower the
tariff rate.

Ramsey Outcome With commitment, the policy maker’s problem is

max
{τ0,τ1,...}

∞∑
t=0

βtχ(τt) +
β

1− β

∞∑
t=0

βt(log st + log(r(τt) + 1− δ))

subject to (
1− st
st

)−σ
= β (r(τt+1) + 1− δ)1−σ

(1− st+1)
−σ

Let βtµt denote the multiplier associated with the constraint involving st and st+1. For τ0, the choice is to
maximize

χ(τ0) +
β

1− β
log(r(τ0) + 1− δ)

For s0, the first-order condition is

β

1− β
1

s0
= −µ0σ

(
1− s0

s0

)−σ−1
1

s2
0

For t ≥ 1, the first-order condition with respect to τt is

βt
(
χτ (τt) +

β

1− β
rτ (τt)

r(τt) + 1− δ

)
= βt−1µt−1(1− σ)β (r(τt) + 1− δ)−σ (1− st)−σ rτ (τt).
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The first order condition with respect to st is

βt
(

β

1− β
1

st

)
= βt−1µt−1σβ (r(τt) + 1− δ)1−σ

(1− st)−σ−1 − βtµtσ
(

1− st
st

)−σ−1
1

s2
t

.

These conditions characterize the transition dynamics.
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