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A. Proofs in the Main Text

A.1 Proof of Simple Lemmas

A.1.1 Proof of Lemma 2.1

Recall the two equations that define the beauty-contest game,

𝑝𝑖𝑡 = (1 − 𝛼)E𝑖𝑡[𝑞𝑡] + 𝛼E𝑖𝑡[𝑝𝑡], and 𝑝𝑡 =
∫

𝑝𝑖𝑡 d𝑖.

Using

E
0
𝑡 [𝑞𝑡] ≡ 𝑞𝑡 , and E

1
𝑡 [𝑞𝑡] ≡

∫
E𝑖𝑡

[
E

0
𝑡 [𝑞𝑡]

]
d𝑖,

it follows that
𝑝𝑡 = E

1
𝑡 [𝑞𝑡] + 𝛼

∫
E𝑖𝑡[𝑝𝑡].

Next, substitute 𝑝𝑡 into itself to get

𝑝𝑡 = E
1
𝑡 [𝑞𝑡] + 𝛼

∫
E𝑖𝑡

[
E

1
𝑡 [𝑞𝑡]

]
+ 𝛼2

∫
E𝑖𝑡

[∫
E𝑖𝑡[𝑝𝑡]

]
.

Iterating on this last step and using

E
𝑘+1
𝑡 [𝑞𝑡] ≡

∫
E𝑖𝑡

[
E
𝑘
𝑡 [𝑞𝑡]

]
d𝑖 ,

yields the result.

A.1.2 Proof of Lemma 3.1

For a discussion of invertibility and its connection to the inside roots of a stochastic ARMA process see Brockwell
and Davis (2002), Section 3.1. When the price process is invertible, observing the history of prices, 𝑝𝑡 ≡ {𝑝𝑡−𝑘}∞𝑘=0
reveals the history of shocks to the fundamental, that is 𝑝𝑡−𝑘 = 𝑔(𝐿)𝜂𝑡−𝑘 implies 𝜂𝑡−𝑘 = 𝑔(𝐿)−1𝑝𝑡−𝑘 , for all 𝑘 ≥ 0.
Since 𝑞𝑡−𝑘 = 𝜌𝑞𝑡−𝑘−1 + 𝜂𝑡−𝑘 , it follows that 𝜂𝑡−𝑘 = 𝑞𝑡−𝑘/(1 − 𝜌𝐿), which implies the result.

A.2 Proof of Proposition 3.1

Suppose that the stochastic process for 𝑝𝑡 is invertible, then observing {𝑝𝑘}𝑡−1
𝑘=−∞ perfectly reveals the underlying

aggregate shocks {𝜂𝑘}𝑡−1
𝑘=−∞ and, therefore, {𝑞𝑘}𝑡−1

𝑘=−∞, so that the only shock the firms are uncertain about is the
current 𝜂𝑡 . It follows that the information structure is exogenous and that the invertible equilibrium is unique.
Guess that the equilibrium policy function has state variables 𝑥𝑖𝑡 and 𝑞𝑡−1, that is guess that firm 𝑖’s policy
function can be written as

𝑝𝑖𝑡 = 𝜙𝑥𝑥𝑖𝑡 + 𝜙𝑞𝑞𝑡−1 ,

for some scalars 𝜙𝑥 and 𝜙𝑞 . It follows that, in aggregate terms,

𝑝𝑡 = 𝜙𝑥𝑞𝑡 + 𝜙𝑞𝑞𝑡−1.

2



To verify the guess, notice that, since 𝑥𝑖𝑡 − 𝜌𝑞𝑡−1 is a noisy signal about 𝜂𝑡 with precision 𝜏, we have that

E𝑖𝑡[𝑞𝑡] = 𝜌

1 + 𝜏
𝑞𝑡−1 + 𝜏

1 + 𝜏
𝑥𝑖𝑡 .

Substituting these results into the best-response function (2) we obtain

𝑝𝑖𝑡 =
𝜏((1 − 𝛼) + 𝛼𝜙𝑥)

1 + 𝜏
𝑥𝑖𝑡 +

(
𝜌((1 − 𝛼) + 𝛼𝜙𝑥)

1 + 𝜏
+ 𝛼𝜙𝑞

)
𝑞𝑡−1 ,

which implies the following consistency requirement

𝜙𝑞 =
𝜌

1 + (1 − 𝛼)𝜏 , and 𝜙𝑥 =
(1 − 𝛼)𝜏

1 + (1 − 𝛼)𝜏 .

Hence, for 𝑝𝑡 to indeed follow an invertible process it is necessary and sufficient that 𝑔(𝐿) = 𝜙𝑥+𝜙𝑞𝐿
1−𝜌𝐿 not have an

inside root, or that |𝜙𝑞/𝜙𝑥 | < 1 which implies the result.

A.3 Proof of Proposition 3.2

The first claim follows directly from the proof of Proposition 3.1. To establish the second claim we follow a
significantly more involved argument. To facilitate reading it we include the proof of the necessary lemmas at
the end of this section.

For a contradiction, suppose there is a finite-state representation, then the law of motion of the aggregate
action can be written as

𝑝𝑡 = 𝑔(𝐿)𝜂𝑡 = 𝐶(𝐿)ℎ(𝐿)𝜂𝑡 ,
where ℎ(𝐿) is analytic and does not contain any inside root, and 𝐶(𝑧) is given by

𝐶 (𝑧) =
𝑛∏
𝑖=1

(𝑧 − 𝜆𝑖) .

where {𝜆1 ,𝜆2 , . . . ,𝜆𝑛} are inside roots of 𝑔(𝑧). The signal structure can be written as follows[
𝑥𝑖𝑡
𝑝𝑡−1

]
= 𝚪(𝐿)

[
𝑢𝑖𝑡
𝜂𝑡

]
≡
[
𝜏−1/2 1

1−𝜌𝐿
0 𝐿𝑔 (𝐿)

] [
𝑢𝑖𝑡
𝜂𝑡

]
.

The determinant of 𝚪(𝐿) is
det[𝚪(𝐿)] = 𝜏−1/2𝐿𝐶(𝐿)ℎ(𝐿),

and it contains inside roots {𝜆1 , . . . ,𝜆𝑛 ,𝜆𝑛+1}, with 𝜆𝑛+1 ≡ 0. Denote the Blaschke matrix by

B(𝐿;𝜆) =
[
1 0
0 1−𝜆𝐿

𝐿−𝜆

]
,
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and let the fundamental representation of the signal process be given by

𝚪∗(𝐿)ϵ𝑖𝑡 = 𝚪(𝐿)
[
𝑢𝑖𝑡
𝜂𝑡

]
,

where

ϵ𝑖𝑡 ≡ A(𝐿)
[
𝑢𝑖𝑡
𝜂𝑡

]
, A(𝐿) ≡ B′

(
𝐿−1;𝜆𝑛+1

)
W′

𝜆𝑛+1
· · ·B′

(
𝐿−1;𝜆1

)
W′

𝜆1
, 𝚪∗(𝐿) ≡ Γ (𝐿)A′(𝐿−1).

and {W𝜆𝑖 } are the rotation matrices that satisfy W𝜆𝑖W′
𝜆𝑖

= I. Next, define the following matrices recursively

𝚪0(𝐿) ≡ 𝚪(𝐿),
𝚪𝑘(𝐿) ≡ 𝚪𝑘−1(𝐿)W𝜆𝑘B(𝐿;𝜆𝑘).

The following lemma characterizes useful properties of 𝚪𝑘(𝐿).
Lemma A.1. The matrix 𝚪𝑘(𝐿) is given by

Γ𝑘 (𝐿) =
[

𝛾𝑘
1 (𝐿) 𝛾𝑘

2 (𝐿)
𝛾𝑘

3 (𝐿) 𝑔 (𝐿) 𝛾𝑘
4 (𝑧) 𝑔 (𝐿)

]
with all 𝛾𝑘

𝑖 (𝐿) independent of 𝑔(𝐿). Moreover,

𝛿𝑘 (𝑧) ≡
𝛾𝑘

1 (𝑧)
𝛾𝑘

2 (𝑧)
satisfies the following recursive structure:

𝛿0(𝑧) = 𝜏−1/2(1 − 𝜌𝑧), (A.1)

𝛿𝑘 (𝑧) = 1 + 𝛿𝑘−1 (𝜆𝑘) 𝛿𝑘−1 (𝑧)
𝛿𝑘−1 (𝜆𝑘) − 𝛿𝑘−1 (𝑧)

𝑧 − 𝜆𝑘

1 − 𝜆𝑘𝑧
. (A.2)

Finally, for 𝑘 ≥ 2, there exists some constant 𝑑𝑘 such that

𝛿𝑘−1 (𝑧) = 𝛿𝑘−1 (𝜆𝑘) + 𝑑𝑘
𝑧 − 𝜆𝑘

1 − 𝜆𝑘−1𝑧
. (A.3)

Using the recursive structure of 𝛿𝑘(𝑧), it is straightforward to verify that A(𝑧) can be written as

A (𝑧) = 𝑐1𝚽(𝑧) = A𝑛+1 (𝑧)A𝑛 (𝑧) . . .A2 (𝑧)A1 (𝑧) ,

with

𝑐1 =
𝑛+1∏
𝑘=1

𝛾𝑘−1
2 (𝜆𝑘)√

𝛾𝑘−1
1 (𝜆𝑘)2 + 𝛾𝑘−1

2 (𝜆𝑘)2
,

A𝑘 (𝑧) =
√
𝛾𝑘−1

1 (𝜆𝑘)2 + 𝛾𝑘−1
2 (𝜆𝑘)2

𝛾𝑘−1
2 (𝜆𝑘)

B′
(
𝑧−1;𝜆𝑘

)
W′

𝜆𝑘
=

[
1 0
0 𝑧−𝜆𝑘

1−𝜆𝑘 𝑧

] [
𝛿𝑘−1 (𝜆𝑘) 1

−1 𝛿𝑘−1 (𝜆𝑘)

]
.
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The following lemma characterizes a useful property of 𝚽(𝑧).

Lemma A.2. The elements of 𝚽(𝑧) satisfy

Φ12(𝑧) = −
∏𝑛+1

𝑘=1

(
𝛿𝑘−1 (𝜆𝑘)2 + 1

)
𝑐2

𝛿0(𝑧−1)
𝐻(𝑧−1) +Φ22(𝑧)𝛿𝑛+1(𝑧−1),

Φ22(𝑧) = 𝑐2
𝐻(𝑧)𝛿0(𝑧−1)𝛿𝑛+1(𝑧) + 1

𝛿0(𝑧)𝛿0(𝑧−1) + 1
,

where 𝐻(𝑧) ≡ ∏𝑛+1
𝑘=1

𝑧−𝜆𝑘
1−𝜆𝑘 𝑧

, and 𝑐2 is some constant.

The equivalence result in Huo and Pedroni (2020) implies that

𝑝𝑖𝑡 = Ẽ𝑖𝑡[𝑞𝑡],

where Ẽ𝑖𝑡 is the expectation conditional on the same information set but with a precision of private signals
misperceived to be 𝜏 ≡ (1 − 𝛼)𝜏. Then, the aggregate action is

𝑝𝑡 =
∫
Ẽ𝑖𝑡[𝑞𝑡]d𝑖.

Since the Hansen-Sargent formula implies

Ẽ𝑖𝑡 [𝑞𝑡] = 1
𝜌

(
Γ (𝐿)
𝐿

− Γ∗ (0)A (𝐿)
𝐿

)
1𝑠𝑡 row

[
𝑢𝑖𝑡
𝜂𝑡

]
,

we obtain the following fixed point problem,

𝑔(𝑧) = 1
𝜌

[
Γ (𝑧)
𝑧

− Γ∗ (0)A (𝑧)
𝑧

]
12

=
1
𝜌𝑧

(
1

1 − 𝜌𝑧
− 𝑆(𝑧)

)
,

or
ℎ(𝑧) = 1

𝜌
1

𝑧𝐶(𝑧)
(

1
(1 − 𝜌𝑧) − 𝑆(𝑧)

)
,

where

𝑆(𝑧) ≡
[
1 0

]
Γ∗ (0)A (𝑧)

[
0
1

]
= 𝑐1

(
𝛾𝑛+1

1 (0)Φ12(𝑧) + 𝛾𝑛+1
2 (0)Φ22(𝑧)

)
.

For ℎ(𝑧) to be an equilibrium, it has to be that

1
(1 − 𝜌𝜆𝑖) = 𝑆(𝜆𝑖), for all 𝑖 ∈ {1, . . . , 𝑛}, (A.4)

so that the poles in 𝐶(𝑧) can be removed.

Next, we show that with a finite number of inside roots, there does not exist an equilibrium.
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Case 1: 𝑛 = 1.. First let 𝑥 ≡ 𝜌 + 1+𝜏
𝜌 and notice that |𝜌| < 1 and 𝜏 > 0 imply |𝑥 | > 2. In this case 𝑆(𝑧) takes a

simple form and we can calculate

𝑆 (𝜆1) − 1
1 − 𝜌𝜆1

=
𝜏𝜆1

(1 − 𝜆1𝜌)
𝑥 − 𝜆1(

1 − 𝜆2
1
) + (𝑥 − 2𝜆1) (𝜌 − 𝑥) ,

so that equation (A.4) implies that 𝜆1 = 𝑥 which is outside the unit circle.

Case 2: 𝑛 = 2.. Suppose that 𝜆1 ≠ 𝜆2, then

𝑆 (𝜆1)
𝑆 (𝜆2) −

1 − 𝜌𝜆2

1 − 𝜌𝜆1
=

𝜏 (𝜆2 − 𝜆1)
(1 − 𝜌𝜆1)

(𝑥 − 𝜆1) (𝑥 − 𝜆2) − 1(
1 − 𝜆2

1
) (𝜌 − 𝑥 + 𝜆2) − (𝑥 − 2𝜆1) ((𝑥 − 𝜆2) (𝜌 − 𝑥) + 1) ,

and equation (A.4) for 𝑖 = {1, 2} implies that (𝑥 − 𝜆1) (𝑥 − 𝜆2) = 1, which implies that either |𝜆1 | > 1 or |𝜆2 | > 1.
Next, if 𝜆1 = 𝜆2 = 𝜆, we have that

𝑆 (𝜆) − 1
1 − 𝜌𝜆

=
𝜏𝜆

1 − 𝜆𝜌

−3𝜆2 + 3𝑥𝜆 − (
𝑥2 − 1

)
(1 − 𝜆2) (4𝜆 − 𝑥 (1 + 𝜆2)) + (4𝑥𝜆 − 𝑥2 + 𝜆4 − 6𝜆2 + 1) (𝜌 − 𝑥) ,

and equation (A.4) implies that 3𝜆2 − 3𝑥𝜆 + 𝑥2 = 1. Notice that the discriminant of this quadratic equation on
𝜆 is 9𝑥2 − 12(𝑥2 − 1) and that it is negative whenever |𝑥 | > 2. Therefore, the solutions are complex. Complex
𝜆’s are allowed but necessitate a conjugate which is not possible in this case since we have assumed 𝜆1 = 𝜆2.

Case 3: 𝑛 > 2.. From the definition of 𝑆(𝑧) and Lemma A.2, it follows that

𝑆(𝜆𝑖) = 𝑐1𝑐2𝛾
𝑛+1
2 (0)1 + 𝛿𝑛+1(0)𝛿𝑛+1(𝜆−1

𝑖 )
1 + 𝛿0(𝜆𝑖)𝛿0(𝜆−1

𝑖 ) .

Equation (A.3) together with the fact that 𝜆𝑛+1 = 0 implies that

𝛿𝑛+1(𝑧) = 𝛿𝑛+1(0) + 𝑑𝑛1𝑧,

for some constant 𝑑𝑛+1. Thus, we can rewrite 𝑆(𝜆𝑖) as

𝑆(𝜆𝑖) = 𝑐1𝑐2𝛾
𝑛+1
2 (0)1 + 𝛿𝑛+1(0)(𝛿𝑛+1(0) + 𝑑𝑛+1𝜆−1

𝑖 )
1 + 𝛿0(𝜆𝑖)𝛿0(𝜆−1

𝑖 ) .

Suppose that the solution to the system of equations (A.4) includes 𝜆𝑖 , 𝜆 𝑗 , 𝜆𝑘 different from each other and all
inside the unit circle. It follows that

𝑆(𝜆𝑖)
𝑆(𝜆 𝑗) =

1 − 𝜌𝜆 𝑗

1 − 𝜌𝜆𝑖
, or

1 + 𝛿𝑛+1(0)(𝛿𝑛+1(0) + 𝑑𝑛+1𝜆−1
𝑖 )

1 + 𝛿0(𝜆𝑖)𝛿0(𝜆−1
𝑖 ) =

1 + 𝛿𝑛+1(0)(𝛿𝑛+1(0) + 𝑑𝑛+1𝜆−1
𝑗 )

1 + 𝛿0(𝜆 𝑗)𝛿0(𝜆−1
𝑗 ) ,

which can be written as

𝛿𝑛+1(0) (𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆 𝑗
) ) + ((1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆 𝑗

) + 𝜆𝑖𝜆 𝑗𝜏
)
𝜌
(
1 + 𝛿2

𝑛+1(0)
)
= 0.
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Suppose that 𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆 𝑗
)
≠ 0, then(

1 − 𝜆𝑖𝜆 𝑗
)
𝜏

𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆 𝑗
) = 1 − 𝑑𝑛+1𝛿𝑛+1(0)

𝜌
(
1 + 𝛿2

𝑛+1(0)
) .

Similarly, if 𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆𝑘) ≠ 0, then

(1 − 𝜆𝑖𝜆𝑘) 𝜏
𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆𝑘) = 1 − 𝑑𝑛+1𝛿𝑛+1(0)

𝜌
(
1 + 𝛿2

𝑛+1(0)
) .

Combining the two conditions above, we have(
1 − 𝜆𝑖𝜆 𝑗

)
𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆 𝑗

) =
(1 − 𝜆𝑖𝜆𝑘)

𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆𝑘) ,

which implies
𝜏𝜆𝑖 + (1 − 𝜆𝑖𝜌)(1𝜆𝑖 − 𝜌) = 0 ⇒ 1 + 𝛿0(𝜆𝑖)𝛿0(𝜆−1

𝑖 ) = 0.

This cannot be the case since 𝑆(𝜆𝑖) must be a finite number. Therefore, if there exists a solution, it has to be that

𝜏 + (1 − 𝜌𝜆𝑖) (1 − 𝜌𝜆 𝑗
)
= 0.

This condition, however, implies that 𝜆𝑖 and 𝜆 𝑗 cannot be simultaneously within the unit circle.

Next, suppose there exits a solution with 𝜆𝑖 = 𝜆, for all 𝑖 ∈ {1, . . . , 𝑛} with |𝜆| < 1. Let {𝜆1,𝑘}∞𝑘=0, . . .,
{𝜆𝑛,𝑘}∞𝑘=0 be 𝑛 sequences such that lim𝑘→∞ 𝜆𝑖 ,𝑘 = 𝜆 and 𝜆𝑖 ,𝑘 ≠ 𝜆 𝑗,𝑘 for all 𝑖 , 𝑗 ∈ {1, . . . , 𝑛} and all 𝑘 ≥ 0. Define

𝜔𝑘 ≡
𝑛∑
𝑖=1

����𝑆(𝜆𝑖 ,𝑘) − 1
1 − 𝜌𝜆𝑖,𝑘

���� .
By continuity of 𝑆(·), 𝜔𝑘 approaches 0 as 𝑘 goes to infinity, since 𝜆𝑖,𝑘 approaches to 𝜆 for all 𝑖 ∈ {1, . . . , 𝑛}.
However, since 𝜆𝑖 ,𝑘 ≠ 𝜆 𝑗 ,𝑘 , as established above, only if some 𝜆𝑖,𝑘 are outside the unit circle, can 𝜔𝑘 approach
0. Since |𝜆| < 1, as 𝑘 goes to infinity, all |𝜆𝑖 ,𝑘 | < 𝛿 for any 𝛿 < 1, which implies that 𝜔𝑘 cannot be close to zero.
This is a contradiction. The case where all 𝜆𝑖 equal to each other, except for one, can be dealt with in a similar
way, which concludes the proof.

A.3.1 Proof of Lemma A.1

We prove this lemma by induction. For 𝑘 = 0, this is clearly the case. For 𝑘 ≥ 1, suppose that

Γ𝑘 (𝑧) =
[

𝛾𝑘
1 (𝑧) 𝛾𝑘

2 (𝑧)
𝛾𝑘

3 (𝑧) 𝑔 (𝑧) 𝛾𝑘
4 (𝑧) 𝑔 (𝑧)

]
.

Then, it follows that
Γ𝑘+1 (𝑧) = Γ𝑘−1 (𝑧)W𝜆𝑘+1B (𝑧;𝜆𝑘+1) ,
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with

W𝜆𝑘+1 =
1√

𝛾𝑘
1 (𝜆𝑘+1)2 + 𝛾𝑘

2 (𝜆𝑘+1)2

[
𝛾𝑘

1 (𝜆𝑘+1) −𝛾𝑘
2 (𝜆𝑘+1)

𝛾𝑘
2 (𝜆𝑘+1) 𝛾𝑘

1 (𝜆𝑘+1)

]
.

So that

Γ𝑘+1 (𝑧) = 1√
𝛾𝑘

1 (𝜆𝑘+1)2 + 𝛾𝑘
2 (𝜆𝑘+1)2

[
𝛾𝑘

1 (𝑧) 𝛾𝑘
2 (𝑧)

𝛾𝑘
3 (𝑧) 𝑔 (𝑧) 𝛾𝑘

4 (𝑧) 𝑔 (𝑧)

] [
𝛾𝑘

1 (𝜆𝑘+1) −𝛾𝑘
2 (𝜆𝑘+1)

𝛾𝑘
2 (𝜆𝑘+1) 𝛾𝑘

1 (𝜆𝑘+1)

]

=

[ (
𝛾𝑘

1 (𝜆𝑘+1) 𝛾𝑘
1 (𝑧) + 𝛾𝑘

2 (𝜆𝑘+1) 𝛾𝑘
2 (𝑧)

) (
𝛾𝑘

1 (𝜆𝑘+1) 𝛾𝑘
2 (𝑧) − 𝛾𝑘

2 (𝜆𝑘+1) 𝛾𝑘
1 (𝑧)

) 1−𝑧𝜆𝑘+1
𝑧−𝜆𝑘+1(

𝛾𝑘
1 (𝜆𝑘+1) 𝛾𝑘

2 (𝑧) + 𝛾𝑘
2 (𝜆𝑘+1) 𝛾𝑘

4 (𝑧)
)
𝑔 (𝑧) (

𝛾𝑘
1 (𝜆𝑘+1) 𝛾𝑘

4 (𝑧) − 𝛾𝑘
2 (𝜆𝑘+1) 𝛾𝑘

3 (𝑧)
) 1−𝑧𝜆𝑘+1

𝑧−𝜆𝑘+1
𝑔 (𝑧)

]
√
𝛾𝑘

1 (𝜆𝑘+1)2 + 𝛾𝑘
2 (𝜆𝑘+1)2

which has the desired structure. Note, moreover, that 𝛾𝑘+1
1 and 𝛾𝑘+1

2 satisfy

𝛾𝑘+1
1 (𝑧) = 𝛾𝑘

1 (𝜆𝑘+1) 𝛾𝑘
1 (𝑧) + 𝛾𝑘

2 (𝜆𝑘+1) 𝛾𝑘
2 (𝑧)√

𝛾𝑘
1 (𝜆𝑘+1)2 + 𝛾𝑘

2 (𝜆𝑘+1)2
,

𝛾𝑘+1
2 (𝑧) = 𝛾𝑘

1 (𝜆𝑘+1) 𝛾𝑘
2 (𝑧) − 𝛾𝑘

2 (𝜆𝑘+1) 𝛾𝑘
1 (𝑧)√

𝛾𝑘
1 (𝜆𝑘+1)2 + 𝛾𝑘

2 (𝜆𝑘+1)2
1 − 𝑧𝜆𝑘+1
𝑧 − 𝜆𝑘+1

.

It follows from these recursions that 𝛿𝑘(𝑧) satisfies equation (A.2). To prove equation (A.3), first notice that, for
𝑘 = 1, it follows from (A.1) and (A.2) that

𝛿1 (𝑧) = 𝛿1 (𝜆1) + (1 − 𝜌𝜆1) (𝜆1 − 𝜌) + 𝜆1𝜏√
𝜏𝜌

(
1 − 𝜆2

1
) 𝑧 − 𝜆1

1 − 𝜆1𝑧
.

Next, suppose that there exists 𝑑𝑘 such that

𝛿𝑘 (𝑧) = 𝛿𝑘 (𝜆𝑘+1) + 𝑑𝑘
𝑧 − 𝜆𝑘+1
1 − 𝜆𝑘𝑧

,

then, equation (A.2) implies that

𝛿𝑘+1 (𝑧) = 𝛿𝑘+1 (𝜆𝑘+1) +
(
1 + 𝛿𝑘 (𝜆𝑘+1)2

)
(𝜆𝑘 − 𝜆𝑘+1) − 𝑑𝑘

(
1 − 𝜆2

𝑘+1

)
𝛿𝑘 (𝜆𝑘+1)

𝑑𝑘
(
1 − 𝜆2

𝑘+1

) 𝑧 − 𝜆𝑘+1
1 − 𝜆𝑘+1𝑧

,

which, again by induction, establishes the result. �

A.3.2 Proof of Lemma A.2

From the definition of A𝑘(𝑧) and equation (A.2), it follows that

A𝑘(𝑧)
[

1
−𝛿𝑘−1(𝑧)

]
= (𝛿𝑘−1 (𝜆𝑘) − 𝛿𝑘−1 (𝑧))

[
1

−𝛿𝑘(𝑧)

]
.
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Define

𝐻 (𝑧) ≡
𝑛+1∏
𝑘=1

𝑧 − 𝜆𝑘

1 − 𝜆𝑘𝑧
, and 𝐺 (𝑧) ≡

𝑛+1∏
𝑘=1

(𝛿𝑘−1 (𝜆𝑘) − 𝛿𝑘−1 (𝑧)) .

Since A(𝑧) = 𝑐1𝚽(𝑧), it follows that

𝐺 (𝑧) = 𝑐2 (1 − 𝑧𝜆𝑛+1)𝐻 (𝑧) = 𝑐2𝐻(𝑧), (A.5)

for some constant 𝑐2, and that

𝚽(𝑧)
[

1
−𝛿0(𝑧)

]
= 𝐺(𝑧)

[
1

−𝛿𝑛+1(𝑧)

]
. (A.6)

For a function 𝑓 (𝑧), define the tilde operator as �̃� (𝑧) = 𝑓 (1/𝑧). Then,

Ã𝑘(𝑧)′A𝑘(𝑧) =
(
𝛿𝑘−1 (𝜆𝑘)2 + 1

) [1 0
0 1

]
,

and, therefore,

�̃�(𝑧)′𝚽(𝑧) = 𝑐3

[
1 0
0 1

]
, where 𝑐3 =

𝑛+1∏
𝑘=1

(
𝛿𝑘−1 (𝜆𝑘)2 + 1

)
.

Next, apply the tilde transformation to equation (A.6) to obtain

�̃�(𝑧)
[

1
−�̃�0(𝑧)

]
= 𝐺(𝑧)

[
1

−�̃�𝑛+1(𝑧)

]
.

Transposing and multiplying from the right with 𝚽(𝑧) yields

𝑐3

[
1 −�̃�0(𝑧)

]
=
[
1 −�̃�0(𝑧)

]
�̃�(𝑧)′𝚽(𝑧) = 𝐺(𝑧)

[
1 −�̃�𝑛+1(𝑧)

]
𝚽(𝑧).

Together with the equation (A.6) we obtain four linear equations for the four entries of 𝚽(𝑧),

Φ11(𝑧) −Φ12(𝑧)𝛿0(𝑧) = 𝐺(𝑧)
Φ21(𝑧) −Φ22(𝑧)𝛿0(𝑧) = −𝛿𝑛+1(𝑧)𝐺(𝑧)

(Φ11(𝑧) −Φ21(𝑧)�̃�𝑛+1(𝑧))𝐺(𝑧) = 𝑐3

(Φ12(𝑧) −Φ22(𝑧)�̃�𝑛+1(𝑧))𝐺(𝑧) = −𝑐3 �̃�0(𝑧).

The rank of the system is 3. Use the first, second and fourth equations to express Φ11(𝑧), Φ12(𝑧), Φ21(𝑧) in terms
of Φ22(𝑧). The third equation does not allow to solve for Φ22(𝑧), rather it collapses to(

1 + 𝛿𝑛+1(𝑧)�̃�𝑛+1(𝑧)
)
𝐺(𝑧)𝐺(𝑧) =

(
1 + 𝛿0(𝑧)�̃�0(𝑧)

)
𝑐3. (A.7)
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We can, now, determine Φ22(𝑧) from1

Φ11(𝑧)Φ22(𝑧) −Φ12(𝑧)Φ21(𝑧) = det (Φ(𝑧)) = 𝑐3𝐻(𝑧),

which implies

Φ22(𝑧) = (𝐺(𝑧)�̃�0(𝑧)𝛿𝑛+1(𝑧) + 𝐺(𝑧)𝐻(𝑧))𝑐3

(1 + 𝛿𝑛+1(𝑧)�̃�𝑛+1(𝑧))𝐺(𝑧)𝐺(𝑧) .

Together with (A.7), this can be simplified to

Φ22(𝑧) = 𝐺(𝑧)�̃�0(𝑧)𝛿𝑛+1(𝑧) + 𝐺(𝑧)𝐻(𝑧)
𝛿0(𝑧)�̃�0(𝑧) + 1

.

Applying the tilde operation to equation (A.5) yields

𝐺(𝑧) = 𝑐2𝐻(𝑧).

Finally, it follows from the definition of 𝐻(𝑧) that 𝐻(𝑧)𝐻(𝑧) = 1, and therefore

Φ22(𝑧) = 𝑐2𝐻(𝑧)�̃�0(𝑧)𝛿𝑛+1(𝑧) + 𝑐2

𝛿0(𝑧)�̃�0(𝑧) + 1
. �

A.4 Proof of Proposition 4.2

Suppose the equilibrium is invertible, then, the information structure is exogenous and equilibrium is unique.
We can, therefore characterize it with a guess-and-verify approach. Guess

𝜋𝑡 = 𝛼0𝜉
𝑠
𝑡 + 𝛼1𝜉

𝑑
𝑡 + 𝛼2𝜂

𝑠
𝑡 + 𝛼3𝜂

𝑑
𝑡 , and 𝑐𝑡 = 𝛽0𝜉

𝑠
𝑡 + 𝛽1𝜉

𝑑
𝑡 + 𝛽2𝜂

𝑠
𝑡 + 𝛽3𝜂

𝑑
𝑡 .

From the best-response functions, it follows that,

𝜋𝑖𝑡 = E𝑖𝑡

[
(𝜅 (𝛽0 + 1) + (1 − 𝜃) 𝛼0) 𝜉𝑠

𝑡 + (𝜅𝛽1 + (1 − 𝜃) 𝛼1) 𝜉𝑑
𝑡

+ (𝜅𝛽2 + (1 − 𝜃) 𝛼2)𝜂𝑠𝑡 + (𝜅𝛽3 + (1 − 𝜃) 𝛼3)𝜂𝑑𝑡

]
+ 𝛿𝜃E𝑖𝑡 [𝜋𝑖𝑡+1] ,

which implies

𝜋𝑡 =
𝜅 (𝛽0 + 1) + (1 − 𝜃) 𝛼0

1 − 𝜃𝛿𝜌
E𝑡

[
𝜉𝑠
𝑡

] + 𝜅𝛽1 + (1 − 𝜃) 𝛼1

1 − 𝜃𝛿𝜌
E𝑡

[
𝜉𝑑
𝑡

]
+ (𝜅𝛽2 + (1 − 𝜃) 𝛼2)E𝑡

[
𝜂𝑠𝑡
] + (𝜅𝛽3 + (1 − 𝜃) 𝛼3)E𝑡

[
𝜂𝑑𝑡
]
,

and

𝑐𝑖𝑡 = E𝑖𝑡

[ (mpc 𝛽0−𝜍(1−mpc)(𝜙𝜋−𝜌)𝛼0)
1−(1−mpc)𝜌 𝜉𝑠

𝑡 + (mpc 𝛽1−𝜍(1−mpc)(1+(𝜙𝜋−𝜌)𝛼1))
1−(1−mpc)𝜌 𝜉𝑑

𝑡

+ (
mpc 𝛽2 − 𝜍𝜙𝜋 (1 − mpc) 𝛼2

)
𝜂𝑠𝑡 +

(
mpc 𝛽3 − 𝜍𝜙𝜋 (1 − mpc) 𝛼3

)
𝜂𝑑𝑡

]
+ (1 − mpc)E𝑖𝑡 [𝑐𝑖𝑡+1] ,

1Notice that
det (A𝑘) =

(
1 + 𝛿𝑘−1 (𝜆𝑘)2

) 𝑧 − 𝜆𝑘
1 − 𝑧𝜆𝑘

.
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which implies

𝑐𝑡 =

(
mpc 𝛽0 − 𝜍 (1 − mpc) (𝜙𝜋 − 𝜌

)
𝛼0

)
1 − (1 − mpc) 𝜌 E𝑡

[
𝜉𝑠
𝑡

] + (
mpc 𝛽1 − 𝜍 (1 − mpc) (1 + (

𝜙𝜋 − 𝜌
)
𝛼1

) )
1 − (1 − mpc) 𝜌 E𝑡

[
𝜉𝑑
𝑡

]
+ (
mpc 𝛽2 − 𝜍𝜙𝜋 (1 − mpc) 𝛼2

)
E𝑡

[
𝜂𝑠𝑡
] + (
mpc 𝛽3 − 𝜍𝜙𝜋 (1 − mpc) 𝛼3

)
E𝑡

[
𝜂𝑑𝑡
]
.

Let 𝜆 = 𝜏
1+𝜏 , then

E𝑡
[
𝜂𝑠𝑡
]
= 𝜆𝜂𝑠𝑡 , and E𝑡

[
𝜂𝑑𝑡
]
= 𝜆𝜂𝑑𝑡 .

Matching coefficients, we obtain the following system of equations,

𝛼0 =
𝜅 (𝛽0 + 1) + (1 − 𝜃) 𝛼0

1 − 𝜃𝛿𝜌
,

𝛼1 =
𝜅𝛽1 + (1 − 𝜃) 𝛼1

1 − 𝜃𝛿𝜌
,

(𝛼0 + 𝛼2) =
(
(𝜅𝛽2 + (1 − 𝜃) 𝛼2) + 𝜅 (𝛽0 + 1) + (1 − 𝜃) 𝛼0

1 − 𝜃𝛿𝜌

)
𝜆,

(𝛼1 + 𝛼3) =
(
(𝜅𝛽3 + (1 − 𝜃) 𝛼3) + 𝜅𝛽1 + (1 − 𝜃) 𝛼1

1 − 𝜃𝛿𝜌

)
𝜆,

𝛽0 =

(
mpc 𝛽0 − 𝜍 (1 − mpc) (𝜙𝜋 − 𝜌

)
𝛼0

)
1 − (1 − mpc) 𝜌 ,

𝛽1 =

(
mpc 𝛽1 − 𝜍 (1 − mpc) (1 + (

𝜙𝜋 − 𝜌
)
𝛼1

) )
1 − (1 − mpc) 𝜌 ,

(𝛽0 + 𝛽2) =
( (
mpc 𝛽2 − 𝜍𝜙𝜋 (1 − mpc) 𝛼2

) + (
mpc𝛽0 − 𝜍 (1 − mpc) (𝜙𝜋 − 𝜌

)
𝛼0

)
1 − (1 − mpc) 𝜌

)
𝜆,

(𝛽1 + 𝛽3) =
( (
mpc 𝛽3 − 𝜍𝜙𝜋 (1 − mpc) 𝛼3

) + (
mpc𝛽1 − 𝜍 (1 − mpc) (1 + (

𝜙𝜋 − 𝜌
)
𝛼1

) )
1 − (1 − mpc) 𝜌

)
𝜆.

Solving the system yields

𝛼0 =
𝜅 (1 − 𝜌)

𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍
(
𝜙𝜋 − 𝜌

) ,
𝛽0 =

𝜅𝜍
(
𝜌 − 𝜙𝜋

)
𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍

(
𝜙𝜋 − 𝜌

) ,
𝛼1 =

−𝜅𝜍
𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍

(
𝜙𝜋 − 𝜌

) ,
𝛽1 =

−𝜃𝜍 (1 − 𝛿𝜌)
𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍

(
𝜙𝜋 − 𝜌

) ,
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and

𝛼2 =
𝜅 (1 − 𝜆) (1 − 𝜌 − mpc𝜆 (1 − 𝜌) − 𝜅𝜍𝜆

(
𝜙𝜋 − 𝜌

) )(
𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍

(
𝜙𝜋 − 𝜌

) ) (
𝜆 (1 − 𝜃) (1 − mpc𝜆) − 𝜅𝜍𝜙𝜋𝜆2 (1 − mpc) − (1 − mpc𝜆)) ,

𝛽2 =
𝜅𝜍 (1 − 𝜆) (mpc𝜙𝜋𝜆 (1 − 𝜌) − (

𝜙𝜋 − 𝜌
) (1 + 𝜃𝜆) − 𝜌𝜆

(
1 − 𝜙𝜋

) )(
𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍

(
𝜙𝜋 − 𝜌

) ) (
𝜆 (1 − 𝜃) (1 − mpc𝜆) − 𝜅𝜍𝜙𝜋𝜆2 (1 − mpc) − (1 − mpc𝜆)) ,

𝛼3 =
−𝜅𝜍 (1 − 𝜆) ((𝜃 − mpc)𝜆 + 1 − 𝜃𝛿𝜌𝜆)(

𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍
(
𝜙𝜋 − 𝜌

) ) (
𝜆 (1 − 𝜃) (1 − mpc𝜆) − 𝜅𝜍𝜙𝜋𝜆2 (1 − mpc) − (1 − mpc𝜆)) ,

𝛽3 =
𝜍 (𝜆 − 1) (𝜃 (1 − 𝛿𝜌) − 𝜃𝜆 (1 − 𝜃) (1 − 𝛿𝜌) − 𝜅𝜍𝜙𝜋𝜆 (1 − mpc))(

𝜃 (1 − 𝜌) (1 − 𝛿𝜌) + 𝜅𝜍
(
𝜙𝜋 − 𝜌

) ) ( (
𝜆 (1 − 𝜃) (1 − mpc𝜆) − 𝜅𝜍𝜙𝜋𝜆2 (1 − mpc) − (1 − mpc𝜆)) ) .

This solution validates the guess. Next, to guarantee that the equilibrium is indeed invertible, we need the
following system to be invertible, [

𝜋𝑡

𝑐𝑡

]
=

[
𝛼0

1−𝜌𝐿 + 𝛼2
𝛼1

1−𝜌𝐿 + 𝛼3
𝛽0

1−𝜌𝐿 + 𝛽2
𝛽1

1−𝜌𝐿 + 𝛽3

] [
𝜂𝑠𝑡
𝜂𝑑𝑡

]
.

For that, we need both roots of the determinant,

Δ (𝐿) =
(

𝛼0
1 − 𝜌𝐿

+ 𝛼2

) (
𝛽1

1 − 𝜌𝐿
+ 𝛽3

)
−
(

𝛼1
1 − 𝜌𝐿

+ 𝛼3

) (
𝛽0

1 − 𝜌𝐿
+ 𝛽2

)
,

to be outside the unit circle. The roots are given by

𝑟1 ≡ −
𝜏 (1 + 𝜃 − mpc) + 𝜏

√
(1 − 𝜃 − mpc)2 − 4(1 − mpc)(𝜃 + 𝜅𝜍𝜙𝜋)

2𝜌 ,

𝑟2 ≡ −
𝜏 (1 + 𝜃 − mpc) − 𝜏

√
(1 − 𝜃 − mpc)2 − 4(1 − mpc)(𝜃 + 𝜅𝜍𝜙𝜋)

2𝜌 .

If (1 − 𝜃 − mpc)2 − 4(1 − mpc)(𝜃 + 𝜅𝜍𝜙𝜋) < 0, the roots are complex and their magnitude is above 1 if

𝜙𝜋 >
𝜌2 − 𝜃 (1 − mpc) 𝜏2

𝜅𝜍(1 − mpc)𝜏2 .

Otherwise, the roots are real and |𝑟1 | > |𝑟2 |. So we need to show that |𝑟2 | > 1, and for that we need to consider
two cases: If 𝜏 (1 + 𝜃 − mpc) < 2𝜌, then |𝑟2 | is always less than 1, otherwise, it is a necessary and sufficient
condition that

𝜙𝜋 >
𝜏𝜌 (1 + 𝜃 − mpc) − 𝜌2 − 𝜃 (1 − mpc) 𝜏2

𝜅𝜍(1 − mpc)𝜏2 .

B. Additional Noise in Exogenous Signals

We illustrate the point that our baseline result serves as a useful benchmark for other environments with
non-square information. Consider the following modification of the exogenous signal while maintaining the
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assumption about perfect price observation,

𝑥𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 + 𝜖𝑡 , 𝜖𝑡 ∼ 𝒩(0, 𝜎2
𝜖).

Here, the 𝜖𝑡 is a common noise that affects the signals of all agents. As a result, the price process is a function
of both the monetary shock and the common noise shock. As 𝜎𝜖 approaches zero, this economy returns to
our baseline economy with a single aggregate shock. Figure 1 below displays the responses of prices to the
fundamental shock 𝜂𝑡 and to the common noise 𝜖𝑡 . When 𝜎𝜖 is positive but relatively small, the price dynamics
still exhibits an oscillatory pattern. When 𝜎𝜖 is relatively large, the behavior of the model resembles the one
with only exogenous signals, as in Angeletos and La’O (2010).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

(a) shock to 𝜂𝑡

0 5 10 15
-0.1

0

0.1

0.2

0.3

0.4

(b) shock to 𝜖𝑡

Figure 1: Responses of Prices to Fundamental and Noise Shocks
Parameters: 𝜌 = 0.9, 𝛼 = 0.9, and 𝜏 = 1.

C. Extensions

In this appendix we show that the main insights developed earlier extend to significantly more involved
information structures, allowing for fundamentals that can follow any stochastic process, and multiple public
and private signals with noise that also follows arbitrary processes. We also extend the results to environments
with more sophisticated linkages among agents featuring forward and backward complementarities, and
multivariate systems that can be viewed as a network game with incomplete information.

C.1 General Information Structure

To facilitate the analysis, we switch to a more general notation, since the applications of the following results
encompass a wide range of settings that may differ from the one considered in the monetary model analyzed
above.

Best Response. Denote agent 𝑖’s action in period 𝑡 by 𝑎𝑖𝑡 . Their best response function is given by

𝑎𝑖𝑡 = 𝜑E𝑖𝑡 [𝜉𝑖𝑡] + 𝛼E𝑖𝑡 [𝑎𝑡] , (C.1)
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where 𝜉𝑖𝑡 denotes the individual fundamental, which can depend in a flexible way on the aggregate and
idiosyncratic shocks, η𝑡 and u𝑖𝑡 ,

𝜉𝑖𝑡 = d(𝐿)η𝑡 + e(𝐿)u𝑖𝑡 , with η𝑡 ∼ 𝒩(0,𝚺2
𝜂), and u𝑖𝑡 ∼ 𝒩(0,𝚺2

𝑢).

The lag-operator polynomial vectors, d(𝐿) and e(𝐿), are assumed to have square-summable coefficients. We
also assume that d(𝐿) is not a constant vector to rule out fundamentals that are i.i.d. on common shocks; in
which case the equilibrium is always invertible, and we rule out redundant shocks by assuming that 𝚺𝜂 and 𝚺𝑢

have full rank.

Information Structure. Agents have perfect recall and, in each period 𝑡, observe three sets of signals: (1)
the previous period aggregate action, 𝑎𝑡−1, (2) a vector of private signals, x𝑖𝑡 , (3) and a vector of public signals,
z𝑡 , where

x𝑖𝑡 = A(𝐿)η𝑡 + B(𝐿)u𝑖𝑡 , and z𝑡 = C(𝐿)η𝑡 .

We make two assumptions: first, that there are as many common shocks as there are public signals (including
𝑎𝑡−1), that is dim(η𝑡) = dim(z𝑡) + 1; second, that the matrix B(𝐿) is invertible. To see why we impose the first
assumption, note that, when dim(η𝑡) < dim(z𝑡)+1, there are more public signals than common shocks and past
aggregate fundamentals are always perfectly revealed independently of the degree of strategic complementarity
or of informational friction; when dim(η𝑡) > dim(z𝑡) + 1, there are more common shocks than public signals
and the system is non-invertible by construction, as in Section 3.5. The interesting case for a discussion about
invertibility is the one in which dim(η𝑡) = dim(z𝑡) + 1. The second assumption is more standard, it essentially
excludes the cases in which non-invertibility is due to exogenously imposed shock processes. If B(𝐿) = B0,
which is usually the case in most information structures considered in the literature, then the invertibility of
B(𝐿) is only violated if B0 is singular or not square in which case one of the private signals is redundant.
Moreover, the polynomial matrices, A(𝐿), B(𝐿) and C(𝐿), must have square-summable coefficients.

Invertibility. In the economy studied in Section 3 there is only one aggregate shock, the monetary shock,
and invertibility is obtained if and only if the equilibrium process for the price index does not contain an inside
root. When there are multiple aggregate shocks, the equilibrium process can be expressed as

𝑎𝑡 = g(𝐿)η𝑡 .

Driven by more than one aggregate shock, the aggregate outcome by itself can no longer reveal all underlying
states. The relevant question becomes whether the history of signals, taken altogether, contains sufficient
information.

Formally, we define an equilibrium process to be invertible if the history of the public signals, {𝑎𝑡 , z𝑡},
contains the same information as the common shocks. The following lemma provides the corresponding
criterion for invertibility.

Lemma C.1. If det [g(𝐿) C(𝐿)]⊤ does not contain any inside root, the equilibrium is invertible. Then, the public signals
and the aggregate outcomes perfectly aggregate information,

E
[
η𝑡 |𝑎𝑡 , z𝑡 ] = η𝑡 , and E

[
𝜉𝑖𝑡 |𝑎𝑡 , z𝑡 ,x𝑡

𝑖

]
= 𝜉𝑖𝑡 . (C.2)
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Proof. By definition, an equilibrium process to be invertible if the history of the public signals, {𝑎𝑡 , z𝑡}, contains
the same information as the common shocks, η𝑡 . Next, notice that

𝑎𝑡 = g(𝐿)η𝑡 and z𝑡 = C(𝐿)η𝑡

can be stacked into
[𝑎𝑡 𝑧𝑡]⊤ = [g(𝐿) C(𝐿)]⊤ η𝑡 .

This is a multivariate ARMA process which is inverlible if det [g(𝐿) C(𝐿)]⊤ does not contain any roots inside
the unit circle (see Brockwell and Davis (2002), Section 7.4). �

This result generalizes Lemma 3.1 to a multivariate system. The exogenously specified signal structure and
the endogenously determined equilibrium process jointly determine whether agents can perfectly infer past
shocks in the economy. Note that, once aggregate shocks are known, idiosyncratic shocks are also known since
B(𝐿) has been assumed to be invertible.

With the general information structure, we can no longer provide a simple partition of the parameter space
into invertible and non-invertible regions as in Proposition 3.1. However, the basic insight derived in Section 3
remains true.

Theorem C.1. There exists 𝛼 ∈ (−1, 1) such that, if 𝛼 > 𝛼, the equilibrium is not invertible.

Proof. See Appendix C.3. �

The exact threshold 𝛼, above which the equilibrium is not invertible, depends on the details of the infor-
mation structure. Independent of these details, however, such a threshold always exists. As in Section 3, if the
degree of strategic complementarity is high enough, the equilibrium is not invertible. Under this more general
information structure, however, the aggregate action may contain information on the aggregate fundamental
as well as the common noise. The degree of strategic complementarity affects the invertibility of the joint
dynamics of aggregate actions and public signals.

There is a sense in which the information structure we set up in this section is too general. In the following
example, we consider a simplified structure that encompasses many used in the literature. Directly, it allows
for the introduction of public signals to the monetary model from Section 3. We also allow agents to have
idiosyncratic fundamentals which they observe with arbitrary precision. Hence, it also encompasses the
information structure in the business-cycle model from Angeletos and La’O (2010) (with the addition of the
observation of past aggregate outcomes). With this simpler structure, we can characterize in more detail how
public signals affect information aggregation with takeaways that are still broadly applicable.

Example: how public signals affect invertibility. Suppose the best response function is given by equation
(C.1) with the individual fundamental, 𝜉𝑖𝑡 , and the aggregate fundamental, 𝜉𝑡 , satisfying

𝜉𝑖𝑡 = 𝜉𝑡 + 𝜔𝑖𝑡 , 𝜔𝑖𝑡 ∼ 𝒩(0, 𝜏−1
𝜔 ), and 𝜉𝑡 = 𝑑(𝐿)𝜂𝑡 , 𝜂𝑡 ∼ 𝒩(0, 1),
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for some arbitrary 𝑑(𝐿) with the normalization 𝑑0 = 1. For simplicity we set 𝜑 = 1 − 𝛼. Every period, agent 𝑖
observes last period’s aggregate action, 𝑎𝑡−1, a private, and a public signal,

𝑥𝑖𝑡 = 𝜉𝑖𝑡 + 𝑢𝑖𝑡 , 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜏−1
𝑢 ), and 𝑧𝑡 = 𝜉𝑡 + 𝜀𝑡 , 𝜀𝑡 ∼ 𝒩(0, 𝜏−1

𝜀 ).

In this setup, we can establish the following proposition which provides an explicit condition for invertibility.
The proof of it also serves as a sketch of the proof of Theorem C.1.

Proposition C.1. The equilibrium is invertible if and only if every root of the function Γ(𝑧)

Γ(𝑧) ≡ 𝑑(𝑧) − 𝛼𝜏𝑢 + 𝜏𝜔
𝜏𝑢 + 𝜏𝜔 + (1 − 𝛼) 𝜏𝑢 (𝜏𝜀 + 𝜏𝜔) (C.3)

lies outside the unit circle, which is not the case for 𝛼 high enough. In particular, if the fundamental follows an AR(1)
process, with 𝑑(𝐿) = 1/(1 − 𝜌𝐿), it is necessary and sufficient for invertibility that

𝛼 < 1 − 𝜌(𝜏𝑢 + 𝜏𝜔)
𝜏𝑢(1 + 𝜌 + 𝜏𝜀 + 𝜏𝜔) . (C.4)

Proof. Suppose the equilibrium is invertible. Then, agents can infer past aggregate shocks perfectly and the
effect of common shocks on the aggregate outcome can only be transitory. It follows that, the impulse response
of the aggregate outcome to any common shock only differs from that of the aggregate fundamental, 𝜉𝑡 , on
impact. Accordingly, the law of motion of the aggregate outcome can be expressed as

𝑎𝑡 = 𝑔𝜂𝜂𝑡 + 𝑔𝜀𝜀𝑡︸       ︷︷       ︸
impact effect

+(𝑑(𝐿) − 1)𝜂𝑡 .

To verify if the equilibrium is indeed invertible, we need to check the condition in Lemma C.1, which, in this
case, reduces to checking if any of the roots of

Γ(𝑧) = 𝑑(𝑧) − 1 − 𝑔𝜂
1 − 𝑔𝜀

, (C.5)

are inside the unit circle. The impact effects

𝑔𝜂 =
(1 − 𝛼)𝜏𝑢(1 + 𝜏𝜔) + 𝜏𝜀(𝜏𝜔 + 𝜏𝑢)
(1 − 𝛼)𝜏𝑢𝜏𝜔 + (1 + 𝜏𝜀)(𝜏𝑢 + 𝜏𝜔) , and 𝑔𝜀 =

𝜏𝜀(𝜏𝜔 + 𝛼𝜏𝑢)
(1 − 𝛼)𝜏𝑢𝜏𝜔 + (1 + 𝜏𝜀)(𝜏𝑢 + 𝜏𝜔) , (C.6)

can be obtained by solving a simple static forecasting problem. Then, equation (C.3) follows from substituting
equation (C.6) into (C.5). Next notice that, as 𝛼 increases towards 1, equation (C.3) converges to 𝑑(𝑧) − 1 which
has root zero, since 𝑑0 = 1. Hence, since the roots of a polynomial are a continuous function of its coefficients,
there exists some 𝛼 ∈ (−1, 1) such that, for all 𝛼 > 𝛼, this equation has an inside root and the equilibrium
cannot be invertible. Moreover, condition (C.4) follows immediately from solving for the root of equation (C.3)
and requiring it to be outside the unit circle. �

Two opposing forces. How does the precision of the public signal, 𝜏𝜖, affect invertibility? Note that in the
proof of Proposition C.1, the root of evil that causes non-invertibility is that 1−𝑔𝜂

1−𝑔𝜖 → 0 when the magnitude of
𝛼 approaches to zero. In general, the equilibrium is more likely to be invertible, or Γ(𝑧) less likely to have an
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inside root when 1−𝑔𝜂
1−𝑔𝜖 is relatively large. This observation suggests that intuitively, a higher 𝜏𝜖 has the following

two opposing effects:

1. The extra precision leads to a better estimate of the fundamental and a stronger response to the funda-
mental, a higher 𝑔𝜂. This tends to make the equilibrium invertible.

2. The response to the common noise, 𝑔𝜀, also increase since agents rely relatively more on the public signal
𝑧𝑡 . This makes the information content of the aggregate action 𝑎𝑡−1 closer to that of the public signal 𝑧𝑡 .
Put differently, there is less differential information contained in the aggregate outcome in comparison
with the public signal, and this tends to make the equilibrium non-invertible.

To further appreciate this last point, consider the special case in which 𝑑(𝐿) = 1/(1 − 𝜌𝐿) and 𝜏𝜔 → ∞. The
information structure, then, reduces to the one from Section 3 with the addition of a public signal. In this case,
the invertibility condition (C.4) becomes

𝛼 < 1 − 𝜌

𝜏𝑢
,

which is identical to condition (7). This may seem puzzling at first, as the precision of the public signal plays
no role in determining invertibility. However, this is because the two forces discussed above exactly cancel
each other. In the extreme, when 𝜏𝜖 goes to infinity, agents can infer the fundamental almost perfectly using
the public signal. On the other hand, they correspondingly discard their private signals, and the aggregate
outcome contains no more information than the one already obtained with the public signal. These effects
cancel, leaving open the possibility that the equilibrium is not invertible.

In contrast, when 𝜏𝜔 is finite, agents always use their private signals to learn about their idiosyncratic
fundamental. It follows that the aggregate outcome necessarily aggregates the information contained in
private signals, which differentiates itself from the public signal 𝑧𝑡 . The two forces do not cancel each other,
and the precision of the public signal, 𝜏𝜀, does matter for the determination of invertibility.

C.2 Forward Complementarities

The best-response function in equation (C.1) only allows for static strategic complementarities, that is, agent 𝑖’s
action depends on the current aggregate action. Here, we extend the analysis to allow for arbitrary forward-
looking complementarities, that is, agent 𝑖’s action can depend on future aggregate actions or on their own
future actions in a flexible way. We consider the following best-response function,

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + E𝑖𝑡[𝛾(𝐿)𝑎𝑡] + E𝑖𝑡[𝛽(𝐿)𝑎𝑖𝑡], (C.7)

where

𝛾(𝐿) ≡
∞∑
𝑘=1

𝛾𝑘𝐿−𝑘 , 𝛽(𝐿) ≡
∞∑
𝑘=1

𝛽𝑘𝐿−𝑘 , and |𝛼 | + ∥𝛾(𝐿)∥ + ∥𝛽(𝐿)∥ < 1.

and we impose a relatively weak condition on the parameters that guarantees existence of the equilibrium.2

Even though the model structure is more sophisticated, it turns out that when the equilibrium is invertible,
the general best-response function in condition (C.7) collapses to the static best response in condition (C.1) with

2In these conditions, ∥·∥ denotes the operator norm.
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a modified fundamental, as forward-looking higher-order expectations collapse to first-order expectations in
this scenario. The following proposition formalizes the required transformation.

Proposition C.2. If the equilibrium is invertible, then the actions under best response (C.7) are observationally equivalent
to those under the following transformed best response

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[�̃�𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡], with �̃�𝑖𝑡 ≡ 1 − 𝛼

1 − 𝛼 − 𝛾(𝐿) − 𝛽(𝐿) 𝜉𝑖𝑡 .

Proof. See Appendix C.4. �

With this transformation, Theorem C.1 can be applied to the general class of best-response functions
described by condition (C.7). The fact that there are forward complementaries does not change the fact that
there always exists a threshold level for the degree of static strategic complementarity, 𝛼, such that, if 𝛼 ≥ 𝛼,
the equilibrium is not invertible.

The effects of forward complementarities on the invertibility of the equilibrium, however, are not as simple
as in the static case. In Appendix C.5 we provide an analysis of the invertibility condition with an ARMA (1,1)
fundamental process, which is fairly complicated as it hinges on the interaction between the fundamental and
the coordination structure. In Appendix C.6, we show how Theorem C.1 can be further extended to economies
with both forward and backward complementarities which encompasses many environments considered in
the DSGE literature.

C.3 Proof of Theorem C.1

Suppose that when 𝛼 = 0 the equilibrium is invertible, otherwise the result is trivial. Section C.3.1 characterizes
the equilibrium assuming invertibility. Using this characterization, Section C.3.2 takes the limit as 𝛼 increases
to 1 and shows that in it the equilibrium cannot be invertible.

C.3.1 Solution Assuming Invertibility

Suppose that the equilibrium is invertible, then the information set of agent 𝑖 in period 𝑡 is given by ℐ𝑖𝑡 ≡
{x𝑖𝜏 , z𝜏 , η𝜏−1 ,u𝑖𝜏−1}𝑡𝜏=−∞. Moreover,

E𝑖𝑡 [𝜉𝑖𝑡] = E [d(𝐿)η𝑡 + e(𝐿)u𝑖𝑡 |ℐ𝑖𝑡] = (d(𝐿) − d0)η𝑡 + d0E [η𝑡 |ℐ𝑖𝑡] + (e(𝐿) − e0)u𝑖𝑡 + e0 E [u𝑖𝑡 |ℐ𝑖𝑡] ,

E𝑖𝑡 [𝑎𝑡] = E [g(𝐿)η𝑡 |ℐ𝑖𝑡] = (g(𝐿) − g0)η𝑡 + g0 E [η𝑡 |ℐ𝑖𝑡] .

Moreover, since

x𝑖𝑡 − (A(𝐿) − A0)η𝑡 − (B(𝐿) − B0)u𝑖𝑡 = A0η𝑡 + B0u𝑖𝑡 , and z𝑡 − (C(𝐿) − C0)η𝑡 = C0η𝑡 ,
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it follows that A0η𝑡 +B0u𝑖𝑡 is a noisy signal about η𝑡 and u𝑖𝑡 , and C0η𝑡 is a noisy signal about η𝑡 , which allows
us to calculate

E [η𝑡 |ℐ𝑖𝑡] =
[
𝚺2
𝜂A⊤

0 𝚺2
𝜂C⊤

0

] [A0𝚺2
𝜂A⊤

0 + B0𝚺2
𝑢B⊤

0 A0𝚺2
𝜂C⊤

0
C0𝚺2

𝜂A⊤
0 C0𝚺2

𝜂C⊤
0

]−1 [
A0η𝑡 + B0u𝑖𝑡

C0η𝑡

]
,

E [u𝑖𝑡 |ℐ𝑖𝑡] =
[
𝚺2
𝑢B⊤

0 0
] [A0𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0 A0𝚺2

𝜂C⊤
0

C0𝚺2
𝜂A⊤

0 C0𝚺2
𝜂C⊤

0

]−1 [
A0η𝑡 + B0u𝑖𝑡

C0η𝑡

]
.

Therefore,

𝑎𝑖𝑡 =𝜑 ((d(𝐿) − d0)η𝑡 + d0 E [η𝑡 |ℐ𝑖𝑡] + (e(𝐿) − e0)u𝑖𝑡 + e0 E [u𝑖𝑡 |ℐ𝑖𝑡]) + 𝛼 ((g(𝐿) − g0)η𝑡 + g0 E [η𝑡 |ℐ𝑖𝑡]) ,

which can be reorganized as

𝑎𝑖𝑡 = [𝜑 (d(𝐿) − d0) + 𝛼 (g(𝐿) − g0)]η𝑡 + 𝜑 (e(𝐿) − e0)u𝑖𝑡 + (𝜑d0 + 𝛼g0)E [η𝑡 |ℐ𝑖𝑡] + 𝜑e0E [u𝑖𝑡 |ℐ𝑖𝑡] .

Consistency requires, in particular, that

g(𝐿) = 𝜑 (d(𝐿) − d0) + 𝛼 (g(𝐿) − g0) + (𝜑d0 + 𝛼g0)k1Ω + 𝜑e0k2Ω,

where

k1 ≡
[
𝚺2
𝜂A⊤

0 𝚺2
𝜂C⊤

0

]
, k2 ≡

[
𝚺2
𝑢B⊤

0 0
]
, and Ω ≡

[
A0𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0 A0𝚺2

𝜂C⊤
0

C0𝚺2
𝜂A⊤

0 C0𝚺2
𝜂C⊤

0

]−1 [
A0

C0

]
.

We can rewrite the equation above as

(1 − 𝛼) g(𝐿) = 𝜑 d(𝐿) + (𝜑d0 + 𝛼g0) (k1Ω − I) + 𝜑e0k2Ω

It is useful to replace the lag operator in this equation with an arbitrary complex number 𝑧. Evaluating this
equation at 𝑧 = 0, for instance, implies the following equilibrium condition,

g0 = 𝜑 (d0k1 + e0k2)Ω (I − 𝛼k1Ω)−1 .

Notice that, using the block-matrix inversion formula, g0 can be rewritten as

g0 =
𝜑

1 − 𝛼
d0E + 𝜑 (d0 (I − E)D + e0 F)

∞∑
𝑗=0

𝛼 𝑗 [(I − E)D (I − E)]𝑗 , (C.8)
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where

D ≡ 𝚺2
𝜂A⊤

0

(
A0 (I − E)𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0

)−1
A0 ,

E ≡ 𝚺2
𝜂C⊤

0

(
C0𝚺2

𝜂C⊤
0

)−1
C0 ,

F ≡ 𝚺2
𝑢B⊤

0

(
A0 (I − E)𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0

)−1
A0 ,

and we have used the fact that E is idempotent. Finally, substituting the expression for g0 into the equation for
g(𝑧) we obtain

g(𝑧) = g0 + 𝜑

1 − 𝛼
(d(𝑧) − d0).

C.3.2 Taking the Limit as 𝛼 Increases to 1

Let
g(𝑧) = 1 − 𝛼

𝜑
g0 + d(𝑧) − d0 ,

so that
g(𝑧) = 𝜑

1 − 𝛼
g(𝑧),

and notice that this is well defined for all 𝛼 < 1 and that, if lim𝛼→1− det
[
C(𝑧) g(𝑧)

]⊤
has an inside root, then

there exists 𝛼 < 1 high enough such that det
[
C(𝑧) g(𝑧)

]⊤
is well defined and has an inside root. It is, in fact,

sufficient to show that
lim
𝛼→1−

det
[
C0 g0

]⊤
= 0.

Accordingly, using equation (C.8) we have that

lim
𝛼→1−

g0 = lim
𝛼→1−

1 − 𝛼
𝜑

g0 = d0E + lim
𝛼→1−

(1 − 𝛼) (d0 (I − E)D + e0F)
∞∑
𝑗=0

𝛼 𝑗 [(I − E)D (I − E)]𝑗 .

In order to proceed, it is useful to establish the following lemma.

Lemma C.2. The matrix (I − E)D (I − E) has all eigenvalues in [0, 1).

Proof. Notice that (I − E)𝚺2
𝜂 is symmetric, so that

(
(I − E)𝚺2

𝜂

)⊤
= (I − E)𝚺2

𝜂. Let M = A0 (I − E)𝚺𝜂 and N = B0𝚺𝑢 ,
then it follows that

MM⊤ = A0 (I − E)𝚺𝜂
((I − E)𝚺𝜂

)⊤ A⊤
0

= A0 (I − E)𝚺𝜂

(
(I − E)𝚺2

𝜂𝚺
−1
𝜂

)⊤
A⊤

0

= A0 (I − E)𝚺𝜂Σ−1
𝜂

(
(I − E)𝚺2

𝜂

)⊤
A⊤

0

= A0 (I − E)𝚺2
𝜂A⊤

0 .

Therefore
(I − E)D (I − E) = Σ𝜂M⊤ (

MM⊤ + NN⊤)−1 MΣ−1
𝜂 ,
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so that (I − E)D (I − E) is similar to M⊤ (
MM⊤ + NN⊤)−1 M. Let 𝑛 ≡ dim(u𝑖𝑡) and 𝑚 ≡ dim(η𝑡), then, it follow

that N is 𝑛 × 𝑛 and M is 𝑚 − 1 × 𝑚. If 𝑛 ≥ 𝑚,

spectrum
(
M⊤ (

MM⊤ + NN⊤)−1 M
)
∪ {01 , . . . , 0𝑛−𝑚} = spectrum

(
MM⊤ (

MM⊤ + NN⊤)−1
)

while if 𝑛 ≤ 𝑚,

spectrum
(
M⊤ (

MM⊤ + NN⊤)−1 M
)
= spectrum

(
MM⊤ (

MM⊤ + NN⊤)−1
)
∪ {01 , . . . , 0𝑚−𝑛} .

The matrix MM⊤ (
MM⊤ + NN⊤)−1 is the product of a positive semi-definite with a positive definite matrix, so

must have positive eigenvalues while NN⊤ (
MM⊤ + NN⊤)−1 is the product of two positive definite matrices,

and, therefore, has strictly positive eigenvalues. Finally, since

MM⊤ (
MM⊤ + NN⊤)−1 = I − NN⊤ (

MM⊤ + NN⊤)−1 ,

it follows that MM⊤ (
MM⊤ + NN⊤)−1 must have eigenvalues lower than 1. Hence,

spectrum ((I − E)D (I − E)) = spectrum
(
M⊤ (

MM⊤ + NN⊤)−1 M
)

= spectrum
(
MM⊤ (

MM⊤ + NN⊤)−1
)
⊂ [0, 1).

�

The lemma implies that
∞∑
𝑗=0

𝛼 𝑗 [(I − E)D (I − E)]𝑗

is well defined and finite, so that

lim
𝛼→1−

(1 − 𝛼) (d0 (I − E)D + e0F)
∞∑
𝑗=0

𝛼 𝑗 [(I − E)D (I − E)]𝑗 = 0.

Therefore,
lim
𝛼→1−

g0 = d0E,

and, using the definition of E,

g0 = d0𝚺2
𝜂C⊤

0

(
C0𝚺2

𝜂C⊤
0

)−1
C0 = aC0 ,

for some vector a. Finally, notice that

det

[
C0

g0

]
= det

[
C0

aC0

]
= 0,

which implies that 𝑧 = 0 is a root of det
[
C(𝑧) g(𝑧)

]⊤
and, therefore,

[
C(𝐿) g(𝐿)

]⊤
is not invertible for 𝛼 close

enough to one (from below).
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C.4 Proof of Proposition C.2

The following lemma establishes a type of law of iterated expectations.

Lemma C.3. If ℐ𝑖𝑡 ⊇ {η𝜏 ,u𝑖𝜏}𝑡−1
𝜏=−∞, then, for any stochastic variable 𝑦𝑖 ,𝑡+𝑗 = f (𝐿)η𝑡+𝑗 + g(𝐿)u𝑖 ,𝑡+𝑗 =

∑∞
𝑠=0 f𝑠η𝑡+𝑗−𝑠 +∑∞

𝑠=0 g𝑠u𝑖 ,𝑡+𝑗−𝑠 ,
E𝑖𝑡[E𝑡+𝑘[𝑦𝑖 ,𝑡+𝑗]] = E𝑖𝑡[𝑦𝑖,𝑡+𝑗], for all 𝑘 ≥ 1.

Proof. Let f𝑠 ≡ 0, and g𝑠 ≡ 0, for all 𝑠 < 0 and note that

E𝑖,𝑡+𝑘[𝑦𝑖,𝑡+𝑗] =
∞∑
𝑠=1

(f𝑗−𝑘+𝑠η𝑡+𝑘−𝑠 + g𝑗−𝑘+𝑠u𝑖,𝑡+𝑘−𝑠) + f𝑗−𝑘(H𝜂η𝑡+𝑘 + H𝑢u𝑖 ,𝑡+𝑘) + g𝑗−𝑘(P𝜂η𝑡+𝑘 + P𝑢u𝑖 ,𝑡+𝑘),

where we have used the fact that: (1) E𝑖 ,𝑡+𝑘[η𝑡+𝑗] = E𝑖,𝑡+𝑘[u𝑖,𝑡+𝑗] = 0, for 𝑗 > 𝑘; (2) E𝑖 ,𝑡+𝑘[η𝑡+𝑗] = η𝑡+𝑗 , and
E𝑖,𝑡+𝑘[u𝑖,𝑡+𝑗] = u𝑖,𝑡+𝑗 , for 𝑗 < 𝑘; and (3) E𝑖,𝑡+𝑘[η𝑡+𝑘] = H𝜂η𝑡+𝑘 + H𝑢u𝑖𝑡+𝑘 , and E𝑖,𝑡+𝑘[u𝑖,𝑡+𝑘] = P𝜂η𝑡+𝑘 + P𝑢u𝑖𝑡+𝑘 ,
for some constant matrices H𝜂, H𝑢 , P𝜂, and P𝑢 .

In aggregate,

E𝑡+𝑘[𝑦𝑖,𝑡+𝑗] =
∞∑
𝑠=1

f𝑗−𝑘+𝑠η𝑡+𝑘−𝑠 + f𝑗−𝑘H𝜂η𝑡+𝑘 + g𝑗−𝑘P𝜂η𝑡+𝑘 .

Consider agent 𝑖’s the inference in period 𝑡,

E𝑖𝑡

[
E𝑡+𝑘[𝑦𝑖 ,𝑡+𝑗]

]
=

∞∑
𝑠=1

f𝑗−𝑠η𝑡−𝑠 + f𝑗(H𝜂η𝑡 + H𝑢u𝑖𝑡) = E𝑖𝑡[𝑦𝑖 ,𝑡+𝑗],

where the last equality follows from the same three facts listed above (with 𝑘 = 0). �

Next, substituting the best-response (C.7) into itself, using the law of iterated expectations, we get

𝑎𝑖𝑡 = E𝑖𝑡[𝜑𝜉𝑖𝑡 + (𝛼 + 𝛾(𝐿))𝑎𝑡 + 𝛽(𝐿)(𝜑𝜉𝑖𝑡 + (𝛼 + 𝛾(𝐿))𝑎𝑡 + 𝛽(𝐿)𝑎𝑖𝑡)],

and iterating on this procedure, using the fact that ∥𝛽(𝐿)∥ < 1 in the operator norm, leads to

𝑎𝑖𝑡 = E𝑖𝑡[𝜑�̂�𝑖𝑡 + (𝛼 + 𝜅(𝐿))𝑎𝑡], where �̂�𝑖𝑡 ≡ 1
1 − 𝛽(𝐿)𝜉𝑖𝑡 and 𝜅(𝐿) ≡ 𝛾(𝐿) + 𝛼𝛽(𝐿)

1 − 𝛽(𝐿) . (C.9)

Notice that 𝜅0 = 0. Aggregating implies

𝑎𝑡 = E𝑡[𝜑�̂�𝑖𝑡 + (𝛼 + 𝜅(𝐿))𝑎𝑡].

Multiplying both sides by 𝜅(𝐿) and considering the inference of agent 𝑖 in period 𝑡, we have that,

E𝑖𝑡[𝜅(𝐿)𝑎𝑡] = E𝑖𝑡
[
𝜅(𝐿)E𝑡[𝜑�̂�𝑖𝑡 + (𝛼 + 𝜅(𝐿))𝑎𝑡]

]
.

Since the equilibrium is invertible, ℐ𝑖𝑡 ⊇ {η𝜏 ,u𝑖𝜏}𝑡−1
𝜏=−∞, so that, using Lemma C.3, it follows that,

E𝑖𝑡[𝜅(𝐿)𝑎𝑡] = E𝑖𝑡[𝜑𝜅(𝐿)�̂�𝑖𝑡 + 𝜅(𝐿)(𝛼 + 𝜅(𝐿))𝑎𝑡],
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and, iterating on this procedure, using the fact that | |𝛼 + 𝜅(𝐿)| | < 1,3 we obtain

E𝑖𝑡[𝜅(𝐿)𝑎𝑡] = E𝑖𝑡
[
𝜑

𝜅(𝐿)
1 − (𝛼 + 𝜅(𝐿)) �̂�𝑖𝑡

]
.

The result follows from substituting this fact and the definitions of �̂�𝑖𝑡 and 𝜅(𝐿) into equation (C.9).

C.5 Forward Complementarity Example

Consider the following simple version of equation (C.7),

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛾E𝑖𝑡[𝑎𝑡+1] + 𝛽E𝑖𝑡[𝑎𝑖𝑡+1],

and suppose that the equilibrium is invertible. Then, Proposition C.2 implies that this is equivalent to the static
best response

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[�̃�𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡], with �̃�𝑖𝑡 ≡ 1 − 𝛼

1 − 𝛼 − (𝛾 + 𝛽)𝐿−1 𝜉𝑖𝑡 .

As noted above, we can see that forward aggregate and individual complementarities, controlled by 𝛾 and 𝛽

have interchangeable effects. This property allows us to simplify the analysis since we do not need to distinguish
between the two types of forward complementarities focusing only on their sum.

Next, to be more concrete, suppose that 𝜉𝑖𝑡 does not depend on idiosyncratic shocks (so we suppress the
notation 𝑖) and follows an ARMA(1,1) process,

𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 + 𝜃𝜂𝑡−1 , 𝜂𝑡 ∼ 𝒩(0, 1),

and that, every period, agent 𝑖 observes last period’s aggregate action, 𝑎𝑡−1, and a private signal,

𝑥𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 , 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜏−1
𝑢 ).

Then, we can establish the following corollary to Proposition C.2.

Corollary C.1. The equilibrium is invertible if and only if���� 1 − 𝛼 + 𝜃(𝛾 + 𝛽)
𝜌(1 − 𝛼 + 𝜃(𝛾 + 𝛽)) − (𝜌 + 𝜃)(1 − 𝛼𝐻)

���� > 1, where 𝐻 ≡ 𝜏𝑢
1 + 𝜏𝑢

. (C.10)

Proof. It follows from Proposition C.2 that, for any 𝑑(𝐿) such that 𝜉𝑡 = 𝑑(𝐿)𝜂𝑡 , the law of motion for the aggregate
action satisfies,

𝑔(𝐿) = 𝜑

[ (1 − 𝛼)𝐿
(1 − 𝛼)𝐿 − (𝛾 + 𝛽)𝑑(𝐿)

]
+
+ 𝛼(𝑔(𝐿) − 𝑔0) + 𝛼𝑔0𝐻.

where [·]+ denotes the annihilator operator, and 𝐻 ≡ 𝜏𝑢/(1+𝜏𝑢). Let 𝜅 ≡ (𝛾+𝛽)/(1−𝛼), replace the lag operator

3To see this, notice that

∥𝛼 + 𝜅(𝐿)∥ =
𝛼 + 𝛾(𝐿)

1 − 𝛽(𝐿)
 ≤ ∥𝛼 + 𝛾(𝐿)∥

(1 − 𝛽(𝐿))−1
 ≤ ∥|𝛼 | + 𝛾(𝐿)∥∥1 − 𝛽(𝐿)∥−1 ≤ 𝛼 + ∥𝛾(𝐿)∥

1 − ∥𝛽(𝐿)∥ < 1,

where the first inequality follows from Cauchy-Schwarz, the second from the fact that, for any operator 𝑇, ∥𝑇∥−1 ≤ 𝑇−1,
and the fourth from the assumptions that ∥𝛽(𝐿)∥ < 1, and |𝛼 | + ∥𝛾(𝐿)∥ + ∥𝛽(𝐿)∥ < 1.
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in this equation with an arbitrary complex number 𝑧, and rearrange to get

(1 − 𝛼)𝑔(𝑧) = 𝜑
𝑧𝑑(𝑧) − 𝜅𝑑(𝜅)

𝑧 − 𝜅
+ 𝛼𝑔0(𝐻 − 1).

We can obtain 𝑔0 = 𝜑𝑑(𝜅)(1 − 𝛼𝐻)−1 by evaluating this equation at 𝑧 = 0, and, then,

𝑔(𝑧) = 𝑔0 + 𝜑

1 − 𝛼
𝑑(𝑧) − 𝑑(𝜅)

𝑧 − 𝜅
𝑧.

Using the fact that 𝑑(𝑧) = (1 + 𝜃𝑧)/(1 − 𝜌𝑧), we obtain

𝑔(𝑧) = 𝜑

1 − 𝜌𝜅

(
1 + 𝜃𝜅
1 − 𝛼𝐻

+ 1
1 − 𝛼

(𝜌 + 𝜃)𝑧
1 − 𝜌𝑧

)
,

which has root
𝑧∗ = (1 − 𝛼)(1 + 𝜃𝜅)

𝜌(1 − 𝛼)(1 + 𝜃𝜅) − (𝜌 + 𝜃)(1 − 𝛼𝐻) .

The equilibrium is invertible if and only if this root to be outside the unit circle, that is |𝑧∗ | > 1. �

It is easy to see from equation (C.10) that the effect of forward complementarities, 𝛾 + 𝛽, on the invertibility
of the equilibrium is ambiguous and depends both on the autoregressive and moving-average parameters, 𝜌
and 𝜃. To interpret this condition, it is useful to consider some particular cases. If, for instance, the fundamental
follows an AR(1) process, with 𝜃 = 0, the inequality simplifies to���� 1 − 𝛼

𝛼𝜌(1 − 𝐻)
���� > 1,

and forward complementarities actually do not matter for invertibility.

To understand this, first let [·]+ denote the annihilator operator which sets negative powers of the lag
operator to zero. Then, because the expected value of future shocks is always zero, we have that, for any
stochastic variable 𝑦𝑖 ,𝑡+𝑗 and any 𝑗, E𝑖𝑡[𝑦𝑖,𝑡+𝑗] = E𝑖𝑡[[𝑦𝑖 ,𝑡+𝑗]+]. When 𝜃 = 0, we have that

[�̃�𝑡]+ =
[

1 − 𝛼

1 − 𝛼 − (𝛾 + 𝛽)𝐿−1
1

1 − 𝜌𝐿
𝜂𝑡

]
+
=

1 − 𝛼

1 − 𝛼 − 𝜌(𝛾 + 𝛽)
1

1 − 𝜌𝐿
𝜂𝑡 .

Thus, a change in 𝛾 + 𝛽 affects only the variance of the fundamental but not the autoregressive coefficient.
Loosely speaking, when 𝛽+ 𝛾 increases, the agent puts relatively more weight on the next period fundamental.
But since E𝑖𝑡[𝜉𝑡+1] = 𝜌E𝑖𝑡[𝜉𝑡] this amounts to a proportional increase in the aggregate action in every period
which does not affect invertibility.

Things are different if 𝜉𝑡 follows an MA(1) process, that is, when 𝜌 = 0 and 𝜃 ≠ 0. In that case, the inequality
simplifies to ����1 − 𝛼 + 𝜃(𝛾 + 𝛽)

𝜃(1 − 𝛼𝐻)
���� > 1,

so that, if 𝜃 > 0 (< 0) the equilibrium is non-invertible when 𝛾 + 𝛽 is low (high) enough.4 In this case, we have

4More specifically, for 𝜃 > 0, the equilibrium is non-invertible if 𝛾 + 𝛽 < (1 − 𝛼𝐻) − (1 − 𝛼)/𝜃, and, for 𝜃 < 0, if
𝛾 + 𝛽 > −(1 − 𝛼𝐻) − (1 − 𝛼)/𝜃.
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Figure 2: Regions of Invertibility with Forward-Looking Complementarities
The only free parameter, 𝜏𝑢 , is set to 1.

that
[�̃�𝑡]+ =

[
1 − 𝛼

1 − 𝛼 − (𝛾 + 𝛽)𝐿−1 (1 + 𝜃𝐿)𝜂𝑡
]
+
=
(
1 − 𝜃(𝛾 + 𝛽)

1 − 𝛼
+ 𝜃𝐿

)
𝜂𝑡 .

Here, it is useful to consider the response of the aggregate action, 𝑎𝑡 , to a shock to the fundamental, 𝜂𝑡 , in period
𝑡 = 0, assuming the equilibrium is invertible. Also, for simplicity, suppose that 𝜃 > 0. Then, an increase in
𝛾 + 𝛽 decreases the response of 𝑎0 by an amount proportional to 𝜃. On the other hand, it leaves 𝑎1 unchanged
since the impulse response of 𝜉𝑡+𝑘 for 𝑘 ≥ 2 is zero, so that forward-looking complementarities do not affect 𝑎1

or the action in any further period. It follows that 𝑎0/𝑎1 decreases, which reduces the signal-to-noise ratio and,
therefore, the informativeness of the observation of 𝑎0 to forecast 𝑎1. This, in turn, makes it less likely that the
equilibrium is indeed invertible.

Figure 2 shows how when the sign of the moving average parameter, 𝜃, flips the effect of an increase
in the degree of forward-looking complementarities, 𝛽 + 𝛾, on invertibility. It also illustrates, in accordance
with Theorem C.1 and Proposition C.2, that it is always the case that for a high enough degree of static
complementarity, 𝛼, the equilibrium is non-invertible.

C.6 Backward and Forward Complementarities

Section C.2 considers a best response function

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛿(𝐿)E𝑖𝑡[𝑎𝑡] + 𝜆(𝐿)E𝑖𝑡[𝑎𝑖𝑡], (C.11)

with forward looking complementarities, that is, assuming that 𝛿(𝐿) and 𝜆(𝐿) are functions only of negative
powers of the lag operator 𝐿. This section handles the cases in which backward complementarities as well.
First, Section C.6.1 discusses the case with only static and backward complementarities. Then, Section C.6.2
deals with the case in which there are both backward and forward complementarities.

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛿(𝐿)E𝑖𝑡[𝑎𝑡] + 𝜆(𝐿)E𝑖𝑡[𝑎𝑖𝑡],
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C.6.1 Backward Complementarities

Consider the best response in equation C.11 with only backward complementarities, that is, such that 𝛿(𝐿) and
𝜆(𝐿) only have positive powers of the lag polynomial. Since past aggregate actions have been assumed to be in
agent’s information sets, it immediately follows that

E𝑖𝑡[𝑎𝑡−𝑘] = 𝑎𝑡−𝑘 , for all 𝑘 ≥ 1. (C.12)

Assume that the perfect information equilibrium,

𝑎𝑡 =
𝜑

1 − 𝛼 − 𝛿(𝐿) − 𝜆(𝐿) 𝜉𝑖𝑡

is well defined, that is, that ∥𝛼 + 𝛿(𝐿) + 𝜆(𝐿)∥ < 1 in the operator norm.

Proposition C.3. The equilibrium is invertible with the best response

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡],

if and only if it is invertible with the best response in equation C.11 with

𝛿(𝐿) =
∞∑
𝑘=1

𝛿𝑘𝐿𝑘 , and 𝜆(𝐿) =
∞∑
𝑘=1

𝜆𝑘𝐿𝑘 .

Proof. It follows from equation (C.12) that the best response with backward complementarities can be rewritten
as

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑖𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛿(𝐿)𝑎𝑡 + 𝜆(𝐿)𝑎𝑖𝑡 .
Analogously to the steps in the proof of Theorem C.1, we obtain the following consistency requirement for the
law of motion of the aggregate action,

g(𝐿) = 𝜑 (d(𝐿) − d0) + 𝛼 (g(𝐿) − g0) + (𝜑d0 + 𝛼g0)k1Ω + 𝜑e0k2Ω + (𝛿(𝐿) + 𝜆(𝐿))g(𝐿),

which can be rewritten as

(1 − 𝛼 − 𝛿(𝐿) − 𝜆(𝐿))g(𝐿) = 𝜑 d(𝐿) + (𝜑d0 + 𝛼g0) (k1Ω − I) + 𝜑e0k2Ω

Since 𝛿0 = 𝜆0 = 0, we have that, just as in the proof of Theorem C.1,

g0 = 𝜑 (d0k1 + e0k2)Ω (I − 𝛼k1Ω)−1 .

and it follows that
g(𝐿) = (1 − 𝛼)g0 + 𝜑(d(𝐿) − d0)

1 − 𝛼 − 𝛿(𝐿) − 𝜆(𝐿) .

Let
g(𝑧) = 1 − 𝛼

𝜑
g0 + d(𝑧) − d0 ,
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so that
g(𝑧) = 𝜑

1 − 𝛼 − 𝛿(𝑧) − 𝜆(𝑧)g(𝑧),

and notice that g(𝑧) is the same as in the proof of Theorem C.1, so that, if the equilibrium is invertible in the static
best response, it remains invertible with any feasible 𝛿(𝐿) and 𝜆(𝐿) since, by assumption, ∥𝛼 + 𝛿(𝐿) + 𝜆(𝐿)∥ < 1.
If it is non-invertible it remains non-invertible for the same reason. �

It follows that the result in Theorem C.1 immediately generalizes to settings with backward-looking com-
plementarities. So that, regardless of these complementarities, if the static complementarity, 𝛼, is large enough
the equilibrium is not invertible.

C.6.2 Interacting Backward and Forward Complementarities

Next, consider the following best-response function which encompasses most environments considered in the
literature including, for instance, the Euler equation in a New-Keynesian model with capital,

𝑎𝑖𝑡 = 𝜑E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛾E𝑖𝑡[𝑎𝑡+1] + 𝛽E𝑖𝑡[𝑎𝑖𝑡+1] + 𝛿E𝑖𝑡[𝑎𝑡−1] + 𝜆E𝑖𝑡[𝑎𝑖𝑡−1].

Perfect Information Benchmark. It is easy to see that, if agents observe every shock up to the current
period perfectly, the equilibrium must satisfy the following consistency requirement

g(𝐿) = 𝜑d(𝐿) + 𝛼g(𝐿) + (𝛾 + 𝛽)
(
g(𝐿) − g0

𝐿

)
+ (𝛿 + 𝜆)g(𝐿)𝐿,

which, replacing the lag operator with an arbitrary complex number 𝑧, can be rewritten as[−(𝛿 + 𝜆)𝑧2 + (1 − 𝛼)𝑧 − (𝛾 + 𝛽)] g(𝑧) = 𝜑d(𝑧)𝑧 − (𝛾 + 𝛽)g0.

In order for this equilibrium to exist and be unique, the polynomial on the left-hand side of this equation must
have exactly one inside root, an assumption that we maintain throughout. By inside root we mean that the
root is inside the unit circle in the complex plane. The right-hand side of the equation must be zero at any
inside root of the polynomial at the left-hand side to avoid poles inside the unit circle. This condition is used
to determine g0. With two outside roots, g0 is indeterminate so that there are multiple equilibria, and with two
inside roots, g0 is over-determined so that, in general, an equilibrium does not exist. Let 𝜅1 and 𝜅2 be the inside
and outside roots respectively, then, we would have that, the unique perfect-information equilibrium satisfies

g(𝐿) = 𝜑

𝛿 + 𝜆

𝜅−1
2

1 − 𝜅−1
2 𝐿

d(𝐿)𝐿 − d(𝜅1)𝜅1
𝐿 − 𝜅1

.

In what follows we only consider the set of parameters in which this perfect-information equilibrium exists and
is unique, that is, such that |𝜅1 | < 1 and |𝜅2 | > 1. We refer to parameters that do not satisfies these conditions
as infeasible. In this setup, we can establish the following result.

Theorem C.2. Suppose that e(𝐿) = e and B(𝐿) = B. For any 𝜔1 , 𝜔2 ≠ 0 such that |𝜔1 | < 1 and |𝜔2 | < 1, there exists
𝜖 > 0 low enough such that if 𝛼 = 1 − (1 + 𝜔1𝜔2)𝜖, 𝛽 + 𝛾 = 𝜔1𝜖, and 𝛿 + 𝜆 = 𝜔2𝜖, the equilibrium is not invertible.
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Proof. The proof is presented in the next Section C.6.3. �

This theorem extends the result in Theorem C.1 for the case in which there are both forward and backward
complementarities under the restriction that e(𝐿) = e and B(𝐿) = B. This restriction is not particularly
relevant since most environments considered in the literature do satisfy it. The theorem implies that there
always a region in the space of feasible complementarity-parameters (𝛼, 𝛾, 𝛽, 𝛿,𝜆) such that the equilibrium is
non-invertible. The reason why it is not enough to take the limit as the static degree of complementarity, 𝛼,
increases to 1, as in Theorem C.1, is because, depending on the starting point, that might lead into an infeasible
set of parameters. Hence, the limit must be taken in a careful enough way to guarantee that the region of
non-invertibility is reached without violating feasibility.

C.6.3 Proof of Theorem C.2

This proof follows very similar steps to the ones in the proof of Theorem C.1, for clarity we closely follow
the argument of that proof. Suppose that when 𝛼 = 0 the equilibrium is invertible, otherwise the result is
trivial. We first characterize the equilibrium assuming invertibility. Using this characterization, we then take
the appropriate limit and shows that, in it, the equilibrium cannot be invertible.

Solution Assuming Invertibility. Suppose that the equilibrium is invertible, then the information set of
agent 𝑖 in period 𝑡 is given by ℐ𝑖𝑡 ≡ {η𝜏−1 ,u𝑖𝜏−1 ,x𝑖𝜏 , z𝜏}𝑡𝜏=−∞. We guess (and verify below) that the individual
policy function takes the form 𝑎𝑖𝑡 = g(𝐿)η𝑡 + hu𝑖𝑡 . Therefore,

E𝑖𝑡 [𝜉𝑖𝑡] = E [d(𝐿)η𝑡 + eu𝑖𝑡 |ℐ𝑖𝑡] = (d(𝐿) − d0)η𝑡 + d0E [η𝑡 |ℐ𝑖𝑡] + eE [u𝑖𝑡 |ℐ𝑖𝑡] ,

E𝑖𝑡 [𝑎𝑡] = E [g(𝐿)η𝑡 |ℐ𝑖𝑡] = (g(𝐿) − g0)η𝑡 + g0 E [η𝑡 |ℐ𝑖𝑡] ,

E𝑖𝑡 [𝑎𝑖𝑡+1] = E [g(𝐿)η𝑡+1 + hu𝑖𝑡+1 |ℐ𝑖𝑡] =
(
g(𝐿) − (g0 + g1𝐿)

𝐿

)
η𝑡 + g1 E [η𝑡 |ℐ𝑖𝑡] ,

E𝑖𝑡 [𝑎𝑡+1] = E [g(𝐿)η𝑡+1 |ℐ𝑖𝑡] =
(
g(𝐿) − (g0 + g1𝐿)

𝐿

)
η𝑡 + g1 E [η𝑡 |ℐ𝑖𝑡] ,

E𝑖𝑡 [𝑎𝑖𝑡−1] = E [g(𝐿)η𝑡−1 + hu𝑖𝑡−1 |ℐ𝑖𝑡] = g(𝐿)η𝑡−1 + hu𝑖𝑡−1 ,

E𝑖𝑡 [𝑎𝑡−1] = E [g(𝐿)η𝑡−1 |ℐ𝑖𝑡] = g(𝐿)η𝑡−1.

Moreover, since

x𝑖𝑡 − (A(𝐿) − A0)η𝑡 = A0η𝑡 + Bu𝑖𝑡 , and z𝑡 − (C(𝐿) − C0)η𝑡 = C0η𝑡 ,
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it follows that x𝑖𝑡 − (A(𝐿) − A0)η𝑡 is a noisy signal about η𝑡 and u𝑖𝑡 , and z𝑡 − (C(𝐿) − C0)η𝑡 is a noisy signal
about η𝑡 , which allows us to calculate

E [η𝑡 |ℐ𝑖𝑡] =
[
𝚺2
𝜂A⊤

0 𝚺2
𝜂C⊤

0

] [A0𝚺2
𝜂A⊤

0 + B𝚺2
𝑢B⊤ A0𝚺2

𝜂C⊤
0

C0𝚺2
𝜂A⊤

0 C0𝚺2
𝜂C⊤

0

]−1 [
A0η𝑡 + Bu𝑖𝑡

C0η𝑡

]
,

E [u𝑖𝑡 |ℐ𝑖𝑡] =
[
𝚺2
𝑢B⊤ 0

] [A0𝚺2
𝜂A⊤

0 + B𝚺2
𝑢B⊤ A0𝚺2

𝜂C⊤
0

C0𝚺2
𝜂A⊤

0 C0𝚺2
𝜂C⊤

0

]−1 [
A0η𝑡 + Bu𝑖𝑡

C0η𝑡

]
.

Therefore,

𝑎𝑖𝑡 =𝜑 ((d(𝐿) − d0)η𝑡 + d0 E [η𝑡 |ℐ𝑖𝑡] + eE [u𝑖𝑡 |ℐ𝑖𝑡]) + 𝛼 ((g(𝐿) − g0)η𝑡 + g0 E [η𝑡 |ℐ𝑖𝑡])
+ 𝛾

((
g(𝐿) − (g0 + g1𝐿)

𝐿

)
η𝑡 + g1 E [η𝑡 |ℐ𝑖𝑡]

)
+ 𝛽

((
g(𝐿) − (g0 + g1𝐿)

𝐿

)
η𝑡 + g1 E [η𝑡 |ℐ𝑖𝑡]

)
+ (𝛿 + 𝜆)g(𝐿)𝐿η𝑡 + 𝜆h𝐿u𝑖𝑡 ,

which can be reorganized as

𝑎𝑖𝑡 =
[
𝜑 (d(𝐿) − d0) + 𝛼 (g(𝐿) − g0) + (𝛾 + 𝛽)

(
g(𝐿) − (g0 + g1𝐿)

𝐿

)
+ (𝛿 + 𝜆)g(𝐿)𝐿

]
η𝑡

+ 𝜆h𝐿u𝑖𝑡 + (𝜑d0 + 𝛼g0 + (𝛾 + 𝛽) g1)E [η𝑡 |ℐ𝑖𝑡] + 𝜑eE [u𝑖𝑡 |ℐ𝑖𝑡] .

Consistency requires, in particular, that

g(𝐿) =𝜑 (d(𝐿) − d0) + 𝛼 (g(𝐿) − g0) + (𝛾 + 𝛽)
(
g (𝐿) − (g0 + g1𝐿)

𝐿

)
+ (𝛿 + 𝜆)g(𝐿)𝐿

+ (𝜑d0 + 𝛼g0 + (𝛾 + 𝛽) g1)k1𝛀 + 𝜑ek2𝛀,

where

k1 ≡
[
𝚺2
𝜂A⊤

0 𝚺2
𝜂C⊤

0

]
, k2 ≡

[
𝚺2
𝑢B⊤

0 0
]
, and Ω ≡

[
A0𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0 A0𝚺2

𝜂C⊤
0

C0𝚺2
𝜂A⊤

0 C0𝚺2
𝜂C⊤

0

]−1 [
A0

C0

]
.

The guess for the policy function can be verified by collecting the terms associated with the idiosyncratic shocks
and noticing that they are zero for any period other than the current one. Thus, we can rewrite the equation
above as

(1 − 𝛼)
(
𝐿 − 𝛾 + 𝛽

1 − 𝛼
− 𝛿 + 𝜆

1 − 𝛼
𝐿2
)
g(𝐿) =𝜑 d(𝐿)𝐿 − (𝛾 + 𝛽) g0

+ (𝜑d0 + 𝛼g0 + (𝛾 + 𝛽) g1) (k1𝛀 − I) 𝐿 + 𝜑ek2𝛀𝐿 (C.13)

It is useful to replace the lag operator in this equation with an arbitrary complex number 𝑧. Evaluating this
equation at different values of 𝑧 implies conditions that allow for the characterization of the equilibrium.

Solving for g(𝑧). The right-hand side of equation (C.13) must be equal to 0 when evaluated at the inside
root, 𝜅1, of the second-order polynomial on the left-hand side of the equation; we denote the outside root by
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𝜅2.5 Moreover, the equation must be consistent with the values of g0 and g1. Consistency at 𝑧 = 0, i.e. g (0) = g0

is automatic. Next, set 𝑧 = 𝜅1 to get

(1 − 𝛼) g0 = 𝜑d(𝜅1) + (𝜑d0 + 𝛼g0 + (𝛾 + 𝛽) g1) (k1𝛀 − I) + 𝜑ek2𝛀.

It follows that
g(𝑧) − g0

𝑧
= − 𝜑(d(𝑧) − d(𝜅1))

(𝛿 + 𝛾)(𝑧 − 𝜅1)(𝑧 − 𝜅2) −
g0

𝑧 − 𝜅2
,

and since, by definition,

g1 =
g (𝑧) − g0

𝑧

����
𝑧=0

,

we obtain
g1 =

g0
𝜅2

+ 𝜑 (d(𝜅1) − d0)
𝛾 + 𝛽

,

Putting these results together we obtain that

(𝜅2 − 𝑧)g(𝑧) = 𝜅2g0 + 𝜑

𝛾 + 𝛽
d(𝑧) − d(𝜅1)

𝑧 − 𝜅1
𝑧,

where
g0 = 𝜑 (d(𝜅1)k1 + ek2)𝛀 (I − (𝛼 + (𝛿 + 𝜆)𝜅1)k1𝛀)−1 .

Notice that, using the block-matrix inversion formula, g0 can be rewritten as

g0 =
𝜑

1 − (𝛼 + (𝛿 + 𝜆)𝜅1)d(𝜅1)E

+ 𝜑 (d(𝜅1) (I − E)D + e F)
∞∑
𝑗=0

(𝛼 + (𝛿 + 𝜆)𝜅1)𝑗 [(I − E)D (I − E)]𝑗 , (C.14)

where

D ≡ 𝚺2
𝜂A⊤

0

(
A0 (I − E)𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0

)−1
A0 ,

E ≡ 𝚺2
𝜂C⊤

0

(
C0𝚺2

𝜂C⊤
0

)−1
C0 ,

F ≡ 𝚺2
𝑢B⊤

(
A0 (I − E)𝚺2

𝜂A⊤
0 + B0𝚺2

𝑢B⊤
0

)−1
A0 ,

and we have used the fact that E is idempotent.

Taking the Appropriate Limit. Suppose that 𝛼 = 1− (1+𝜔1𝜔2)𝜖, 𝛾 + 𝛽 = 𝜔1𝜖, and 𝛿 +𝜆 = 𝜔2𝜖. It follows
that, for all 𝜖 > 0,

𝜅1 = 𝜔1 , 𝜅2 = 𝜔−1
2 , and 𝛼 + (𝛿 + 𝜆)𝜅1 = 1 − 𝜖.

5Explicitly,

𝜅1 =
1 − 𝛼 −√(1 − 𝛼)2 − 4(𝛾 + 𝛽)(𝛿 + 𝜆)

2(𝛿 + 𝜆) , and 𝜅2 =
1 − 𝛼 +√(1 − 𝛼)2 − 4(𝛾 + 𝛽)(𝛿 + 𝜆)

2(𝛿 + 𝜆) .
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To establish the claim, we consider the limit of

g(𝑧) = 𝜑

(1 − 𝜔2𝑧)𝜖
(
𝜔2
𝜔1

d(𝑧) − d(𝜔1)
𝑧 − 𝜔1

𝑧 + 𝜖
𝜑
g0

)
,

as 𝜖 decreases towards 0. Let
g(𝑧) = 𝜔2

𝜔1

d(𝑧) − d(𝜔1)
𝑧 − 𝜔1

𝑧 + 𝜖
𝜑
g0 ,

so that
g(𝑧) = 𝜑

(1 − 𝜔2𝑧)𝜖g(𝑧),

and notice that this is well defined for all 𝜖 > 0 and that, if lim𝜖→0+ det
( [

C (𝑧) g(𝑧)
]⊤)

has an inside root,

then there exists 𝜖 low enough such that det
( [

C (𝑧) g(𝑧)
]⊤)

is well defined and has an inside root. Recall that

|𝜔2 | < 1. It is, in fact, sufficient to show that

lim
𝜖→0+

det
( [

C (0) g0

]⊤)
= 0.

Accordingly, using equation (C.14) we have that

lim
𝜖→0+

g0 = lim
𝜖→0+

𝜖
𝜑
g0 = d(𝜔1)E + lim

𝜖→0+
𝜖 (d(𝜔1) (I − E)D + eF)

∞∑
𝑗=0

(1 − 𝜖)𝑗 [(I − E)D (I − E)]𝑗 .

It follows from Lemma C.2 that ∞∑
𝑗=0

(1 − 𝜖)𝑗 [(I − E)D (I − E)]𝑗

is well defined and finite, so that

lim
𝜖→0+

𝜖 (d(𝜔1) (I − E)D + eF)
∞∑
𝑗=0

(1 − 𝜖)𝑗 [(I − E)D (I − E)]𝑗 = 0.

Therefore,
lim
𝜖→0+

g0 = d(𝜔1)E
and, using the definition of E,

g0 = d0𝚺2
𝜂C⊤

0

(
C0𝚺2

𝜂C⊤
0

)−1
C0 = aC0

for some vector a. Finally, notice that

det

[
C0

g0

]
= det

[
C0

aC0

]
= 0,

which implies that 𝑧 = 0 is a root of det
[
C(𝑧) g(𝑧)

]⊤
and, therefore,

[
C(𝐿) g(𝐿)

]⊤
is not invertible for 𝜖 close

enough to zero.
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D. Invertibility in New Keynesian Model

Firms: The New Keynesian Phillips Curve. The optimal reset price solves the following problem:

𝑃∗
𝑖 ,𝑡 = arg max

𝑃𝑖,𝑡

∞∑
𝑘=0

(𝛿𝜃)𝑘 E𝑖,𝑡
[
𝑄𝑡 |𝑡+𝑘

(
𝑃𝑖,𝑡𝑌𝑖,𝑡+𝑘 |𝑡 − 𝑃𝑡+𝑘𝑚𝑐𝑡+𝑘𝑌𝑖,𝑡+𝑘 |𝑡

) ]
subject to the demand equation, 𝑌𝑖 ,𝑡+𝑘 =

(
𝑃𝑖 ,𝑡
𝑃𝑡+𝑘

)−𝜖
𝑌𝑡+𝑘 , where 𝑄𝑡 |𝑡+𝑘 is the stochastic discount factor between 𝑡

and 𝑡 + 𝑘, 𝑌𝑡+𝑘 and 𝑃𝑡+𝑘 are, respectively, aggregate income and the aggregate price level in period 𝑡 + 𝑘, 𝑃𝑖,𝑡

is the firm’s price, as set in period 𝑡, 𝑌𝑖,𝑡+𝑘 |𝑡 is the firm’s quantity in period 𝑡 + 𝑘, conditional on not having
changed the price since 𝑡, and 𝑚𝑐𝑡+𝑘 is the real marginal cost in period 𝑡 + 𝑘. The firm’s discount factor is 𝛿,
and 𝜃 is the Calvo parameter (probability of not resetting price).

Taking the first-order condition and log-linearizing around a steady state with no shocks and zero inflation,
we get the following, familiar, characterization of the optimal reset price:

𝑝∗𝑖 ,𝑡 = (1 − 𝛿𝜃)
∞∑
𝑘=0

(𝛿𝜃)𝑘 E𝑖,𝑡 [𝑚𝑐𝑡+𝑘 + 𝑝𝑡+𝑘] . (D.1)

Suppose that firms observe the aggregate prices up to period 𝑡 − 1, that is, they observe 𝑝𝑡−1, then we can
restate condition (D.1) as

𝑝∗𝑖 ,𝑡 − 𝑝𝑡−1 = (1 − 𝛿𝜃)
∞∑
𝑘=0

(𝛿𝜃)𝑘 E𝑖,𝑡 [𝑚𝑐𝑡+𝑘] +
∞∑
𝑘=0

(𝛿𝜃)𝑘 E𝑖 ,𝑡 [𝜋𝑡+𝑘] . (D.2)

Since only a fraction 1 − 𝜃 of the firms adjust their prices each period, the price level in period 𝑡 is given by
𝑝𝑡 = (1 − 𝜃) ∫ 𝑝∗𝑖,𝑡 d𝑖 + 𝜃𝑝𝑡−1, and inflation is given by

𝜋𝑡 ≡ 𝑝𝑡 − 𝑝𝑡−1 = (1 − 𝜃)
∫ (

𝑝∗𝑖,𝑡 − 𝑝𝑡−1

)
d𝑖.

Define the firm specific inflation rate to be

𝜋𝑖,𝑡 ≡ (1 − 𝜃)
(
𝑝∗𝑖,𝑡 − 𝑝𝑡−1

)
.

Then, it follows from equation (D.2) that

𝜋𝑖,𝑡 = (1 − 𝜃)E𝑖,𝑡 [(1 − 𝛿𝜃)𝑚𝑐𝑡 + 𝜋𝑡] + 𝛿𝜃E𝑖 ,𝑡

[
(1 − 𝜃)

∞∑
𝑘=0

(𝛿𝜃)𝑘 E𝑖,𝑡+1 [(1 − 𝛿𝜃)𝑚𝑐𝑡+1+𝑘 + 𝜋𝑡+1+𝑘]
]
,

and we obtain the following beauty contest game, which includes equation (11),

𝜋𝑖 ,𝑡 = (1 − 𝜃) (1 − 𝛿𝜃)E𝑖,𝑡 [𝑚𝑐𝑡] + (1 − 𝜃)E𝑖 ,𝑡 [𝜋𝑡] + 𝛿𝜃E𝑖,𝑡 [𝜋𝑖,𝑡+1] , with 𝜋𝑡 =
∫

𝜋𝑖 ,𝑡 d𝑖.
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Households: The Dynamic IS. The consumer’s problem is

max
{𝐶𝑖 ,𝑡 ,𝐵𝑖,𝑡+1}

E𝑖,𝑡


∞∑
𝑘=0

𝛽𝑘
𝐶

1− 1
𝜍

𝑖 ,𝑡+𝑘
1 − 1

𝜍


subject to

𝐶𝑖,𝑡 + 𝐵𝑖,𝑡+1 = 𝑅𝑡−1𝐵𝑖,𝑡 + 𝑌𝑡 ,

where 𝑅𝑡 and 𝑊 denote real interest rates and income. At any state, the life-time budget constraint can be
written as ∞∑

𝑘=0

𝐶𝑖 ,𝑡+𝑘∏𝑘
𝑗=1 𝑅𝑡+𝑗−1

= 𝑅𝑡−1𝐵𝑖 ,𝑡 +
∞∑
𝑘=0

𝑌𝑡∏𝑘
𝑗=1 𝑅𝑡+𝑗−1

,

which can be log-linearized into
∞∑
𝑘=0

𝛽𝑘𝑐𝑖 ,𝑡+𝑘 =
∞∑
𝑘=0

𝛽𝑘𝑦𝑡+𝑘 .

Combining this with the log-linearized version of the households’ Euler equation,

𝑐𝑖,𝑡 = E𝑖,𝑡[𝑐𝑖,𝑡+1] − 𝜍E𝑖,𝑡[𝑟𝑡],

and using the market clearing condition, 𝑦𝑡 = 𝑐𝑡 , we obtain

𝑐𝑖 ,𝑡 = −𝜍𝛽
∞∑
𝑘=0

𝛽𝑘E𝑖,𝑡[𝑟𝑡+𝑘] + (1 − 𝛽)
∞∑
𝑘=0

𝛽𝑘E𝑖,𝑡[𝑐𝑡+𝑘].

Finally, notice this is implied by the following beauty-contest game,

𝑐𝑖 ,𝑡 = −𝜍𝛽E𝑖,𝑡[𝑟𝑡] + (1 − 𝛽)E𝑖,𝑡[𝑐𝑡] + 𝛽E𝑖,𝑡[𝑐𝑖,𝑡+1], with 𝑐𝑡 =
∫

𝑐𝑖,𝑡 d𝑖.

Letting mpc = 1 − 𝛽 yields equation (12).

D.1 Invertibility: Proof of Proposition 4.1

Suppose that 𝜉𝑡 follows an AR(1) process

𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 + 𝜃𝜂𝑡−1 , with 𝜂𝑡 ∼ 𝑁 (0, 1) ,

and that, besides past prices, firms only observe a private signal about it with precision 𝜏𝑢 ,

𝑥𝑖,𝑡 = 𝜉𝑡 + 𝑢𝑖 ,𝑡 , with 𝑢𝑖,𝑡 ∼ 𝑁
(
0, 𝜏−1

𝑢

)
.

Then, it follows from Corollary C.1 that for a best response

𝑎𝑖 ,𝑡 = 𝜑E𝑖,𝑡 [𝜉𝑡] + 𝛼E𝑖,𝑡 [𝑎𝑡] + 𝛾E𝑖,𝑡 [𝑎𝑡+1] + 𝛽E𝑖 ,𝑡 [𝑎𝑖,𝑡+1]
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the equilibrium is invertible if and only if

𝐶(𝛼) ≡
���� 1 − 𝛼

𝜌𝛼(1 − 𝐻)
���� > 1, where 𝐻 ≡ 𝜏𝑢

1 + 𝜏𝑢
.

For positive 𝛼 and 𝜌, the relevant case here, it is easy to see that 𝐶(𝛼) is a decreasing function. Hence, higher
degrees of static strategic complementarity make it less likely that the equilibrium is invertible. Since this
controlled by 1 − 𝜃 in the NKPC and mpc ≡ 1 − 𝛽 in the Dynamic IS, invertibility is less likely for lower 𝜃 and
higher mpc.

E. Additional Material for Section 4.3

E.1 Recovering Model IRFs via VAR

In Section 4.3.2, we remark on the comparability between the IRFs obtained by Angeletos, Collard, and Dellas
(2020) from the data using a VAR that assumes invertibility and the IRFs from the model in which output is non
invertible. To address this, we make two points here: (1) Even if a multivariate VAR system is invertible, the
conditional response of a single variable to a particular shock can still be non-invertible; and (2) Although our
model implies a non-invertible process for output, a VAR estimation using model generated data can reproduce
the IRF close to the true IRF generated by the model.

First notice that, even though the VAR procedure requires that the variables be jointly invertible with respect
to the identified set of shocks, a single variable may not be invertible with respect to a particular shock. In
the case of Angeletos, Collard, and Dellas (2020), though the system is invertible, this does not imply that the
conditional response of output to the main business shock has to be invertible. As an example, consider the
following auto-regressive bivariate system

[
𝑦1𝑡

𝑦2𝑡

]
=

[
𝜌11 𝜌12

𝜌21 𝜌22

] [
𝑦1𝑡−1

𝑦2𝑡−1

]
+
[
𝜖1𝑡

𝜖2𝑡

]
=

[
1 − 𝜌22𝐿 𝜌12𝐿

𝜌21𝐿 1 − 𝜌11𝐿

] [
𝜖1𝑡

𝜖2𝑡

]
(1 − 𝜌11𝐿)(1 − 𝜌22𝐿) − 𝜌12𝜌21𝐿2 .

For invertility of the system we need the roots of the polynomial

(1 − 𝜌11𝐿)(1 − 𝜌22𝐿) − 𝜌12𝜌21𝐿2 ,

to be outside the unit circle, while for invertibility of the conditional response of 𝑦1𝑡 to 𝜖1𝑡 we need |𝜌22 | < 1. It
is easy to find parameters such that the bivariate system is invertible (i.e., {𝜖1𝜏 , 𝜖2𝜏}𝑡−∞ can be recovered from
{𝑦1𝜏 , 𝑦2𝜏}𝑡−∞), while 𝑦1𝑡 is not invertible with respect to 𝜖1𝑡 (i.e., {𝜖1𝜏}𝑡−∞ cannot be recovered from {𝑦1𝜏}𝑡−∞).
The following matrix of parameters is one example:[

𝜌11 𝜌12

𝜌21 𝜌22

]
=

[
1/3 2/3
−2/3 3/2

]
.

The main business cycle shock in Angeletos, Collard, and Dellas (2020) is identified by maximizing the
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volatility of the unemployment rate at a certain frequency. The identification strategy is not directly associated
with an interpretable shock in a micro-founded model such as a TFP shock or a monetary policy shock. Also, the
identification strategy does not impose any assumption on agents’ information sets. Therefore, it could be the
case that the system is invertible from the perspective of an econometrician who observed all the endogenous
variables perfectly, while agents in the model only receive imperfect information as in our model environment.
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(a) response of output
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(b) response of inflation

Figure 3: Recovering Impulse Response Functions from Simulated Data
Parameters: 𝜌 = 0.9, 𝛼 = 0.5, and 𝜏 = 0.25.

In principle, however, it remains unclear to what extent our structural IRF can be recovered from a VAR.
To address this question, we conduct two tests: in the first test, we run the same VAR exercise as in Angeletos,
Collard, and Dellas (2020) on simulated data for output and inflation from our model, and compare the IRFs
with the structural ones. As shown in Figure 3 above, the true IRF (solid blue line) and the response from the
bivariate var (dashed red line) are quite similar to each other both quantitatively and qualitatively, though the
estimated system is invertible by construction. In the second test, we estimate a univariate dynamic system
with only output data generated from our model. The recovered IRF is displayed in the yellow broken line in
Panel 3a, which is also not far from the structural IRF. This suggests that the magnitude of the non-invertibility
in our calibrated model does not significantly affect the recovery of the IRFs from a VAR.

E.2 Quantitative Response of Inflation to a Supply shock

In Section 4.3, we compare the predictions of our model to data on unemployment expectations. Here we
show that we obtain analogous results when we consider the response of the inflation and inflation forecasts
to a supply shock. In the data we consider the shock orthogonal to the main business cycle shock (Angeletos,
Collard, and Dellas, 2020), which drives most of the fluctuation in inflation. Figure 4 presents impulse responses
computed by Angeletos, Huo, and Sastry (2020) using data from the Survey of Professional Forecasts and from
University of Michigan Survey of Consumers.

Relative to the system (13)-(16), here we additionally assume that consumers are not subject to informational
frictions, so that a standard IS curve operates: 𝑐𝑡 = −𝜍E𝑡[𝜙𝜋𝜋𝑡 − 𝜋𝑡+1] + E𝑡[𝑐𝑡+1]. Figure 5 presents the results
for the model under the same four information structures considered in Section 4.3. We set the economic
parameters to the same level, and choose the remaining three parameters so that the impulse response of the
model with endogenous information approximates the data from the SPF—the parameters are reported under
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(a) inflation SPF (b) inflation Michigan

Figure 4: Responses of Annualized Inflation to Supply Shocks

the figure. In the data, observations occur at a quarterly rate but inflation rates are annualized. In the model,
annualized inflation in period 𝑡 is equal the sum of current quarterly rate with the preceding three rates. This
explains the initial increasing pattern of the impulse response of the perfect information model, for instance.
Aside from this, all qualitative features noted in Section 4.3 are also observed here.
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Figure 5: Quantitative Model (Annualized) Inflation
Preset parameters: 𝜅 = 0.05, 𝜃 = 0.45, 𝛿 = 0.99, 𝜍 = 1, mpc = 0.15, and 𝜙𝜋 = 1.5. Calibrated parameters: 𝜌 = 0.61, 𝜏 = 0.09,
and 𝜎𝜂 = 14.09.

36



References

Angeletos, G.-M., F. Collard, and H. Dellas (2020): “Business-cycle anatomy,” American Economic
Review, 110(10), 3030–70.

Angeletos, G.-M., Z. Huo, and K. Sastry (2020): “Imperfect Macroeconomic Expectations: Evidence
and Theory,” in NBER Macroeconomics Annual 2020, volume 35, NBER Chapters. National Bureau of
Economic Research, Inc.

Angeletos, G.-M., and J. La’O (2010): “Noisy Business Cycles,” in NBER Macroeconomics Annual 2009,
Volume 24, pp. 319–378. University of Chicago Press.

Brockwell, P., and R. Davis (2002): Introduction to Time Series and Forecasting. Springer.

Huo, Z., and M. Pedroni (2020): “A Single-Judge Solution to Beauty Contests,” American Economic
Review, 110(2), 526–68.

37


	Proofs in the Main Text
	Proof of Simple Lemmas
	Proof of Lemma 2.1 
	Proof of Lemma 3.1 

	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Lemma A.1
	Proof of Lemma A.2

	Proof of Proposition 4.2 

	Additional Noise in Exogenous Signals
	Extensions
	General Information Structure
	Forward Complementarities
	Proof of Theorem C.1
	 Solution Assuming Invertibility
	Taking the Limit as  Increases to 1

	Proof of Proposition C.2
	Forward Complementarity Example
	Backward and Forward Complementarities 
	Backward Complementarities 
	Interacting Backward and Forward Complementarities
	Proof of Theorem C.2


	Invertibility in New Keynesian Model
	Invertibility: Proof of Proposition 4.1

	Additional Material for Section 4.3
	Recovering Model IRFs via VAR
	Quantitative Response of Inflation to a Supply shock


