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Abstract

We develop a method of solving rational expectations models with dispersed information and
dynamic strategic complementarities. In these types of models, the equilibrium outcome hinges
on an infinite number of higher-order expectations which require an increasing number of state
variables to keep track of. Despite this complication, we prove that the equilibriumoutcome always
admits a finite-state representation when the signals follow finite ARMA processes. We also show
that such finite-state result may not hold with endogenous information aggregation. We further
illustrate how to use the method to derive comparative statics, characterize equilibrium outcomes
in HANK-type network games, reconcile with empirical evidence on expectations, and integrate
incomplete information with bounded rationality in general equilibrium.
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1. INTRODUCTION

In many economic problems, agents’ decisions hinge on expectations about other agents’ decisions.
For example, when a manager resets their product’s price, she needs to take into account their com-
petitors’ pricing strategy in the future; when a consumer plans how much to consume, she needs to
form expectations about her future income, which in turn depends on future aggregate expenditure.
With heterogeneous information among agents, the coordination motive makes aggregate outcomes
depend on higher-order uncertainty, or beliefs about others’ beliefs. In these environments, what
are the macroeconomic effects of incomplete information? How do they interact with the general
equilibrium consideration?

In this paper, we propose a method that helps solve and characterize the equilibrium in models
featuring dispersed information and dynamic strategic interactions among agents.¹ We prove that
when signals follow ARMA processes, aggregate outcomes permit a tractable finite-state representa-
tion despite the vast complexity of higher-order expectations. We show that the interaction between
informational frictions and dynamic complementarities can be summarized a single equation, the
roots of which shape the propagation mechanism in the equilibrium. These results further yield a
sequence of applied lessons.

Framework. We consider the following baseline framework, in which the individual agent 𝑖’s best
response is

𝑎𝑖𝑡 = E𝑖𝑡[𝜉𝑡] + E𝑖𝑡[𝛽(𝐿)𝑎𝑖𝑡] + E𝑖𝑡[𝛾(𝐿)𝑎𝑡],

where 𝜉𝑡 is some exogenous economic fundamental, 𝑎𝑡 is the aggregate outcome. The lag operator
function 𝛽(𝐿) captures the dependence on the agent’s own past and future actions. Importantly, we
allow 𝛾(𝐿) to capture dependence on others actions’ or the dynamic complementarities, and agents do
not share a common information set. This framework nests a variety of applications with incomplete
information, including the monetary model as inMaćkowiak andWiederholt (2009), the asset pricing
model as in Allen, Morris, and Shin (2006), the New Keynesian model as in Nimark (2008), and so on.
In a macroeconomic setting, 𝛽(𝐿) effectively summarizes the partial equilibrium (PE) consideration,
while 𝛾(𝐿) summarizes the general equilibrium (GE) consideration.

The joint presence of incomplete information and strategic interactions implies that the outcome
relies not only on first-order expectations, but also on higher-order expectations. To accommodate
higher-order uncertainty is important in macroeconomics: it makes room for forces akin to animal
spirits (Lorenzoni, 2009), modifies relative strength between GE and PE (Angeletos and Lian, 2018),
induces dynamics that are empirically relevant (Woodford, 2003), and many others.

However, when strategic interactions are intertemporal or heterogeneous cross-sectionally, the
types of higher-order expectations involved can be quite complex. With persistent information, to
keep track of these higher-order expectations may require the entire history of signals, known as the

¹Throughout the paper, we focus on linear models with Gaussian shocks.
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infinite regress problem (Townsend, 1983). Whether there exists a small set of sufficient statistics to sum-
marize the relevant information in equilibrium is unknown ex ante, which is in contrast with models
with perfect information where the state variables are typically straightforward to identify. This is
why these types of models are challenging to solve and characterize.

Inference Problem. To overcome this difficulty, we propose a joint use of the Wiener-Hopf predic-
tion formula and the Kalman filter. The Wiener-Hopf prediction formula allows one to forecast the
aggregate outcome without specifying the set of state variables (Sargent and Hansen, 1981; White-
man, 1983; Kasa, 2000; Rondina, 2008; Kasa, Walker, and Whiteman, 2014). However, it still requires
a fundamental representation of the signal process so that a new set of transformed shocks contain
the same amount of information as the signals.² Under the assumption that signals follow ARMA
processes, the steady-state Kalman filter is ready to provide such representation. Our contribution
is bridging the Kalman filter with the Wiener-Hopf prediction formula, which makes the inference
problem tractable even for complicated signal structures and allows us to derive the theoretical results
in a general model environment.

With the help of these tools, we first derive a compact formula for the forecast of an arbitrary ran-
dom variable, which overcomes the difficulty in implementing the annihilation operator for rational
functions. In the end, solving for the equilibrium policy rule boils down to finding a fixed point in
the space of analytic functions. The transformation from the time domain to the frequency domain
avoids the task of looking for an infinite sequence of coefficients that map the entire history of signals
to the current outcome, and it yields amuch simpler characterization of the equilibrium than onemay
expect.

Finite-State Representation. Our main result is that the equilibrium outcome always permits a
finite-state representation, despite all the complications due to higher-order expectations. This result
holdswhen signals followARMAprocesses, a condition that can be guaranteedwhen the information
flow is exogenously determined. The key observation is that recording all higher-order expectations
indeed requires an infinite number of state variables, but the equilibrium outcome only depends on
a weighted average of them which surprisingly collapses to a low dimensional object. We provide an
explicit solution formula, and the associated condition that determines the uniqueness and existence
of the equilibrium.

An important feature of models with incomplete information is the sluggish response due to the
fact that higher-order expectations are more anchored than first-order expectations (Woodford, 2003;
Nimark, 2008; Angeletos and Huo, 2021). We show that the parameters that characterize the addi-
tional persistence of the outcome are the outside roots of a single polynomial equation involving four
elements: (1) the informational friction captured by the covariance structure of the signal process, (2)
the information incompleteness captured by the presence of private signals, (3) the partial equilibrium

²The original representation of the signal process typically has the feature that shocks contain more information than
signals, so agents need to solve a signal extraction problem to infer the underlying shocks.
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consideration 𝛽(𝐿), and (4) the general equilibrium consideration 𝛾(𝐿). These roots hinge on the inter-
action between the informational friction and the coordination motive only if elements (2) and (4) are
simultaneously present, or when higher-order expectations play a role in determining the outcome.
The properties of the forecasts determined by informational friction itself do not directly transmit to
the endogenous outcome (which would be the case when information heterogeneity or coordination
motive was eliminated). Instead, the underlying informational friction may loom larger according to
the dynamic complementarities and the amount of information in the public domain relative to that
in the private domain.

Onemay note that the nature of the competitive equilibrium concept allows agents to treat the law
of motion of the aggregate outcome as given, without considering all the higher-order expectations.
Our strategy in solving the equilibrium follows this logic by solving for the fixed point directly. Ex
post, the finite-state result implies a purely statistical observation: a weighted sum of infinite higher-
order expectations obeys a finite-order ARMA process. This result reconciles the disparity between
the complex higher-order expectations considered by economists and the simple equilibrium law of
motion considered by agents within the model. With static strategic concern, this type of dimension
reduction takes a particularly sharp form where the sum of higher-order expectations is identical to
a more noisy first-order expectation (Huo and Pedroni, 2020).³

Our main result can also be extended to a class of models with network structure. In this context,
agents may differ from each other in terms of how their payoff depends on the activities of differ-
ent groups as well as their signal structures. This connects to the literature on network games with
incomplete information but static information (Bergemann, Heumann, and Morris, 2017; Golub and
Morris, 2019), and a growing literature that emphasizes the interaction between the network struc-
ture of the macroeconomy and the informational friction (Auclert, Rognlie, and Straub, 2020; La’O
and Tahbaz-Salehi, 2020; Chahrour, Nimark, and Pitschner, 2021).

Applications. Through a sequence of applications, we demonstrate how our results can help de-
velop applied lessons and illustrate the role of higher-order uncertainty in shaping equilibrium out-
comes. Our first application shows that our method facilitates closed-form solutions and proofs of
comparative statistics. We revisit the classical beauty-contest models à la Woodford (2003) and An-
geletos and La’O (2010) with both private and public signals. In response to both the fundamen-
tal shock and the common noise, the outcome displays additional persistence, which encapsulates
the effects of all the higher-order expectations. Thanks to the analytical solution, we prove that this
endogenous persistence is increasing in both the informational friction and the degree of strategic
complementarity. We further prove that the volatility of the outcome driven by the fundamental is
decreasing in the degree of complementarity, but the outcome driven by the common noise is instead
increasing in the degree of complementarity.

³With static complementarity, the infinite sum of higher-order expectations is equivalent to the first-order expectation
with the precision of private shocks discounted by the degree of complementarity.
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In the second application, we extend our analysis to a HANK-type model with incomplete infor-
mation (Auclert, Rognlie, and Straub, 2020; Angeletos and Huo, 2021). In this model, the interde-
pendence among different consumers amounts to a network game. The analytical solution allows us
to characterize the interaction of three types of heterogeneity among consumers: marginal propen-
sity to consume (MPC), income exposure to output, and informational frictions about the underlying
fundamental. We show sequentially that (1) with common information structure among consumers,
increasing high MPC consumers’ income exposure to output amplifies the effects of incomplete in-
formation; (2) fixing the average informational friction in the economy, a reduction of the information
received by high MPC consumers has a larger quantitative bite. Notably, these results can be under-
stood via a small number of statistics that govern both the impact and dynamic effects, which com-
plement the recent work that studies the full-blownHANKmodel without imposing full-information
and rational expectations (Pfäuti and Seyrich, 2022; Guerreiro, 2022; Gallegos, 2023).

In the third application, we compare our solution under rational expectations with that under cer-
tain bounded rationality, and discuss how to distinguish them using the evidence on forecasts. We
extend the decentralized-trading model as in Angeletos and La’O (2013) to an environment with per-
sistent sentiment shocks. With rational expectations, the persistence of the equilibrium outcome is
always smaller than that of the exogenous sentiment, a footprint of the general equilibrium force. In
Angeletos and La’O (2013), a heterogeneous prior approach is adopted,⁴ which significantly simplifies
the dynamics of the higher-order expectations at the cost of individual rationality. In this case, the per-
sistence of the equilibrium outcome is always identical to that of the sentiment shock. To distinguish
these alternative approaches, we consider the regressions proposed by Coibion and Gorodnichenko
(2015) and Bordalo, Gennaioli, Ma, and Shleifer (2020) that estimate the predictability of forecast error
using forecast revision at the aggregate and individual level, respectively. With rational expectations,
the regression coefficient at the aggregate level is positive and is larger than that at the individual
level, broadly consistent with the empirical regularities. However, under heterogeneous prior, these
two regression coefficients become identical and negative.

In the forth application, we show how ourmethod can help integrate incomplete informationwith
belief distortions in a general equilibrium setting. To illustrate, we extend the beauty-contest model
to allow diagnostic expectation à la Bordalo, Gennaioli, Ma, and Shleifer (2020). In Bordalo, Gen-
naioli, Ma, and Shleifer (2020), the process of the variable to be forecast is specified exogenously. In
contrast, in our environment, the outcome is determined in equilibrium and is the result of agents’
expectations. Despite the deviation from strict rationality, the finite-state result still applies, and the
interaction between the general equilibrium consideration and the belief distortion jointly determines
the equilibrium outcome. Relative to the case with rational expectations, the diagnostic expectation
modifies both the impact response and the propagation later on, but nevertheless leaves the long-
term persistence the same. This approach complements the literature that studies the general equilib-

⁴With heterogeneous prior, shocks are perfectly observed but agents believe that all others observe biased signals.
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rium implication of diagnostic expectations but focuses on environments with common information
(L’Huillier, Singh, and Yoo, 2021; Bordalo, Gennaioli, Shleifer, and Terry, 2021; Bianchi, Ilut, and Saĳo,
2021).

Endogenous Information. Lastly, we consider the environment with endogenous information, that
is, the signals may contain aggregate outcomes determined in equilibrium, such as outputs or prices.
Our preferred interpretation of the endogenous information equilibrium consists two parts: (1) com-
petitive agents take the signal process as exogenously given, and choose their actions according to
their best response function; (2) the law of motion of the implied aggregate outcome is the same as the
perceived one that enters the signal process. The first part corresponds to an exogenous-information
equilibrium and therefore our previous results can still apply, while the second part imposes an ad-
ditional fixed point problem. Conceptually, the endogenous-information is a particular exogenous-
information equilibrium, where the signal process satisfies additional restrictions. However, with
such endogenous signal processes, the finite-state result may not be true. We offer an example which
naturally extends previous models, but the equilbliurm law of motion cannot be represented by a
finite ARMA process.⁵

Related literature. This paper is most closely related to the literature that studies dynamic linear
models with the frequency domain approach. With complete information, Sargent andHansen (1981)
and Whiteman (1983) provide a general solution formula for linear models with rational expecta-
tions. With incomplete information, a number of papers (Kasa, 2000; Acharya, 2013; Kasa, Walker,
andWhiteman, 2014; Tan andWalker, 2015; Rondina andWalker, 2021; Acharya, Benhabib, and Huo,
2021) explore models with endogenous information aggregation. This line of work utilizes the prop-
erties that the number of signals is the same as the number of shocks, and obtain the fundamental
representation by flipping the inside root using Blascke matrices. Taub (1989), Rondina (2008) and
Miao, Wu, and Young (2021) instead consider the case where there are more shocks than signals,
and obtain the fundamental representation through a canonical factorization (Rozanov, 1967). Our
approach instead relies on the steady-state Kalman filter to obtain the fundamental representation,
which is essential for the derivation of our theoretical results in a general setting. Furthermore, it has
an attractive feature that even for large scale state-space systems, the Kalman filter problem can be
solved in a fast and robust way.

This paper is also closely related to a large literature at the interaction between macroeconomics
and incomplete information, which could be traced back to Lucas (1972). On the theoretical side, it
builds on the studies on beauty-contest games (Morris and Shin, 2002; Angeletos and Pavan, 2007;
Bergemann and Morris, 2013) and extends the analysis to models with intertemporal coordination
and persistent information. On the applied side, it complements a large amount of work on the ef-
fects of monetary shocks (Woodford, 2003; Mankiw and Reis, 2002; Maćkowiak andWiederholt, 2009;

⁵In a different envrionment, Makarov and Rytchkov (2012) also show that the equilibrium does not admit a Markovian
dyanmics.
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Hellwig and Venkateswaran, 2009; Melosi, 2016), the non-fundamental driven aggregate fluctuations
(Lorenzoni, 2009; Angeletos and La’O, 2010; Barsky and Sims, 2012; Angeletos and La’O, 2013; Ni-
mark, 2014; Benhabib, Wang, and Wen, 2015; Huo and Takayama, 2022; Chahrour and Jurado, 2018),
and the propagation mechanism of business cycle fluctuations with imperfect information (Bacchetta
and Wincoop, 2006; Graham and Wright, 2010; Venkateswaran, 2014; Maćkowiak and Wiederholt,
2015; Angeletos and Lian, 2018; Chahrour and Gaballo, 2016).⁶ The equilibrium characterization pro-
vided in this paper can also be applied tomany of themodel economies in the aforementioned papers.
Particularly, the finite-state result implies that the guess-and-verify approach used inWoodford (2003)
and Angeletos and La’O (2010) works beyond their specific choice of the information process.

Another line of research our work connects with is to use survey data on forecasts to discipline the
expectation formation process. Coibion and Gorodnichenko (2015) and Kohlhas and Walther (2021)
test the predictability of aggregate forecasts error, and provide evidence that supports different mod-
els with rational expectations and dispersed information. Bordalo, Gennaioli, Ma, and Shleifer (2020),
Broer and Kohlhas (2019), and Fuhrer (2018) instead propose various deviations from rationality to
account for salient patterns in individual forecasts. The method in our paper can be combined with
different types of bounded rationality and helps to explore their general equilibrium implications, as
demonstrated in Angeletos, Huo, and Sastry (2021).

Finally, our work is also complementary to the literature that solves models with endogenous
information numerically. To maintain the number of state variables to be finite, one common ap-
proach is to keep track of a finite number of signals (Townsend, 1983; Hellwig, 2002; Lorenzoni, 2009;
Venkateswaran, 2014). Nimark (2017) and Melosi (2014) instead approximate the equilibrium out-
come with a finite number of higher-order expectations. Sargent (1991) uses a lower-order ARMA
process to approximate the true equilibrium process. Han, Tan, and Wu (2019) solves the model in
the frequency domain with the Fourier transformation, and they show that the method in obtaining
the fundamental representation proposed in this paper is useful in computing quantitative models.
Chiang (2022) extends the analysis beyond linear models to accommodate the effects of dispersed
information on higher-order moments. Our numerical strategy differs from the existing methods by
solving an exogenous-information equilibrium in each iteration, which helps reduce the number of
state variables and increase the convergence speed.

2. AN ILLUSTRATIVE EXAMPLE

In this section, we present a relatively simple beauty-contest model similar to the one considered
in Morris and Shin (2002) and Woodford (2003). In this model, higher-order expectations play an
important role in shaping aggregate outcomes and the infinite regress problem naturally arises. We
use this model to illustrate how our method works.

⁶See Angeletos and Lian (2016) for a more comprehensive review of the literature.
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Consider an economy with a continuum of agents. Agent 𝑖’s best response in period 𝑡, 𝑎𝑖𝑡 , is a
weighted average of her forecast of an exogenous fundamental, 𝜉𝑡 , and the aggregate outcome 𝑎𝑡

𝑎𝑖𝑡 = (1 − 𝛼)E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑎𝑡], where 𝑎𝑡 =
∫

𝑎𝑖𝑡 . (2.1)

The parameter 𝛼 ∈ (−1, 1) determines the degree of strategic complementarity (𝛼 > 0) or substi-
tutability (𝛼 < 0) between agents’ actions.⁷ The operator E𝑖𝑡[·] denotes the expectation conditional on
agent 𝑖’s information set which will be specified shortly.

We assume that the fundamental 𝜉𝑡 follows AR(1) process

𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 , 𝜂𝑡 ∼ 𝒩(0, 1),

and in each period, agents receive a private signal about the fundamental

𝑥𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 , 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜎2). (2.2)

The information set of agent 𝑖 contains all the signals up to time 𝑡, ℐ𝑖𝑡 = {𝑥𝑖𝑡 , 𝑥𝑖𝑡−1 , . . .}. We purposely
choose a relatively simple fundamental and signal process which is sufficient to illustrate the key
idea of our method, and the analysis will be extended to allow for a much more general information
structures in Section 3. Also note that the information here is exogenous, in the sense that its infor-
mativeness does not depend on endogenous objects determined in equilibrium. We will discuss the
case with endogenous information later in Section 5.

Complete Information Benchmark. In this economy, the variance of the idiosyncratic noise, 𝜎2, de-
termines the degree of information frictions. Suppose, momentarily, agents observe the fundamental
perfectly (𝜎 = 0), and this fact is common knowledge. It is then immediate that we return to the
representative-agent case and the outcome is pinned down solely by the fundamental

𝑎∗𝑡 = 𝜉𝑡 .

Furthermore, the strategic complementarity 𝛼 is irrelevant in determining the equilibrium outcome.

Incomplete Information and Higher-Order Expectations. When 𝜎 > 0, the fundamental can no
longer be observed perfectly and agents need to solve a signal extraction problem to infer the fun-
damental, which represents first-order uncertainty. More importantly, information is dispersed and
there is a lack of common knowledge. To infer others’ actions, an individual agent also needs to infer
other agents’ beliefs, and other agents’ beliefs about other agents’ beliefs, and so on, which represents
higher-order uncertainty.

⁷With 𝛼 > 1, there could be multiple equilibria if the action is bounded. By assuming 𝛼 ∈ (−1, 1), we can guarantee the
existence of a unique equilibrium that can be represented by the sum of infinite higher-order expectations, which satisfies
the ‘global stability under uncertainty’ condition provided by Weinstein and Yildiz (2007).
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In fact, the aggregate outcome can be expressed as a function of higher-order expectations. By
aggregation, condition (2.1) becomes

𝑎𝑡 = (1 − 𝛼)E𝑡[𝜉𝑡] + 𝛼E𝑡[𝑎𝑡], (2.3)

where E𝑡[·] stands for the average expectation in the cross-section of the population. Iterating the
above condition once, we have

𝑎𝑡 = (1 − 𝛼)E𝑡[𝜉𝑡] + (1 − 𝛼)𝛼E𝑡
[
E𝑡[𝜉𝑡]

]
+ 𝛼2E𝑡

[
E𝑡[𝑎𝑡]

]
,

in which the dependence of the aggregate outcome on the second-order expectation appears. By re-
peatedly iterating condition (2.3), the aggregate outcome can be expressed as a function of the infinite
hierarchy of expectations about the fundamental

𝑎𝑡 = (1 − 𝛼)
∞∑
𝑘=0

𝛼𝑘E
𝑘+1
𝑡 [𝜉𝑡], (2.4)

where the higher-order expectation is defined recursively as E
𝑘+1
𝑡 [𝑋] ≡ E𝑡

[
E
𝑘
𝑡 [𝑋]

]
.

This higher-order expectation representation remains to be true regardless of the information
structure. With complete information, the law of iterated expectations applies and all higher-order
expectations are identical to the first-order expectation, in which case 𝑎𝑡 = E𝑡[𝜉𝑡]. In contrast, when
information is incomplete, higher-order expectations differ fromfirst-order expectations and the equi-
librium outcome inherits the properties of all these different expectations. Meanwhile, with dynamic
information, the laws of motion of higher-order expectations become increasingly complex as the or-
der increases, which amounts to a computational challenge.

Though expressing the aggregate outcome in terms of higher-order expectations can be helpful for
economists to understand the effects of incomplete information,⁸ it is not necessary for agents in the
economy to compute themwhen choosing the best action. Similar to the casewith perfect information,
it is sufficient for agents to obtain the law of motion of the aggregate outcome at the fixed point, and
they may bypass the computation of higher-order expectations. In fact, this is the approach that will
be taken in this paper.

To solve the equilibrium with incomplete information, the difficulty lies in identifying the right
state variables that summarize the past information. In standard complete-information models, it is
typically straightforward to find the state variables, such as capital and TFP in real-business-cycle
models. In contrast, with dispersed information, the entire history of signals is potentially relevant,
and it is not even clear whether there exists such finite-dimensional state variables or not.⁹ In what

⁸See Morris and Shin (2002), Woodford (2003), Angeletos and Lian (2018) for example.
⁹In Woodford (2003) and Angeletos and La’O (2010), a guess-and-verify approach is used to solve this type of problem

by conjecturing a particular law of motion for the aggregate outcome. However, it remains unclear whether a finite-state
law of motion exists or not in general, and if so, what form it takes.
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follows, we will explain in details how to overcome this difficulty.

Inference. To provide a road map, we start with the well-known Kalman filter to obtain the forecast
rule for the fundamental. We then derive the fundamental representation of the signal process based
on the previous forecast rule, which in turn facilitates the use of Wiener filter to obtain the forecast
rule for the aggregate outcome. The equilibrium is obtained by solving a fixed point problem in the
end.

By the Kalman filter, the first-order expectation about the fundamental 𝜉𝑡 is given by

E𝑖𝑡[𝜉𝑡] = E𝑖,𝑡−1[𝜉𝑡−1] +
(
1 − 𝜆

𝜌

)
(𝑥𝑖𝑡 − E𝑖,𝑡−1[𝜉𝑡]) =

(
1 − 𝜆

𝜌

)
1

1 − 𝜆𝐿
𝑥𝑖𝑡 . (2.5)

Condition (2.5) is the simply the optimal Bayesian updating: the forecast is a weighted average be-
tween the prior mean and the new signal. The weight on the new signal, 1− 𝜆

𝜌 , is the familiar Kalman
gain where

𝜆 =
1
2


(

1
𝜌
+ 𝜌 + 1

𝜌𝜎2

)
−

√(
1
𝜌
+ 𝜌 + 1

𝜌𝜎2

)2

− 4
 . (2.6)

However, the Kalman filter cannot be directly used to forecast the aggregate outcome 𝑎𝑡 . Due to
the linear-Gaussian framework, the optimal action 𝑎𝑖𝑡 is a linear function of current and past signals.
Denote the policy function as 𝑎𝑖𝑡 = ℎ(𝐿)𝑥𝑖𝑡 , where ℎ(𝐿) = ∑∞

𝑘=0 ℎ𝑘𝐿
𝑘 . As idiosyncratic shocks wash

out in aggregate, the law of motion of the aggregate outcome is then 𝑎𝑡 = ℎ(𝐿)𝜉𝑡 = ℎ(𝐿)
1−𝜌𝐿𝜂𝑡 . A prereq-

uisite for applying the Kalman filter is that the law of motion of 𝑎𝑡 is known ex ante, but ℎ(𝐿) is the
equilibrium object to be solved for. This constraint makes us turn to the Wiener filter, with which the
forecast of a variable does not require the exact form of its law of motion. This property is particularly
useful for the problem at hand.

A key step when applying theWiener filter is to obtain a fundamental representation of the signal
process, 𝑥𝑖𝑡 = 𝐵(𝐿)𝑤𝑖𝑡 , where 𝐵(𝐿) is invertible and 𝑤𝑖𝑡 is some serially uncorrelated innovation. This
is an alternative representation of the original signal process with the property that the history of
signals 𝑥𝑡𝑖 and the history of shocks 𝑤𝑡

𝑖 contain the same amount of information. Recall that with the
original signal representation (2.2), there are two shocks (𝜂𝑡 and 𝑢𝑖𝑡), but only one signal. Therefore,
the underlying shocks contain strictly more information than the signals. This new representation is
necessary because the linear projection is ultimately on the space spanned by shocks, which requires
that the signals span exactly the same space.

To construct such a fundamental representation, we need to revisit the Kalman filter. From the
formula (2.5), the forecast error of the future signal is

𝑤𝑖𝑡+1 ≡ 𝑥𝑖𝑡+1 − E𝑖𝑡[𝑥𝑖𝑡+1] = 𝑥𝑖𝑡+1 − 𝜌E𝑖𝑡[𝜉𝑡] = 1 − 𝜌𝐿
1 − 𝜆𝐿

𝑥𝑖𝑡+1. (2.7)
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It follows that the signal can be expressed as a combination of the forecast errors

𝑥𝑖𝑡 = 𝐵(𝐿)𝑤𝑖𝑡 ≡ 1 − 𝜆𝐿
1 − 𝜌𝐿

𝑤𝑖𝑡 , 𝑤𝑖𝑡 ∼ 𝒩
(
0,

𝜌𝜎2

𝜆

)
. (2.8)

Equation (2.8) is a fundamental representation and 𝑤𝑖𝑡 is the corresponding fundamental innovation.
To see that 𝑤𝑖𝑡 is serially uncorrelated, note that the forecast error 𝑤𝑖𝑡 is orthogonal to the past signals
{𝑥𝑖𝑡−1 , 𝑥𝑖𝑡−2 , . . .} and therefore is uncorrelatedwith its own past values {𝑤𝑖𝑡−1 , 𝑤𝑖𝑡−2 , . . .}. Meanwhile,
𝐵(𝐿) is invertible and the fundamental innovations 𝑤𝑖𝑡 can also be expressed as a function of current
and past signals, 𝑤𝑖𝑡 = 𝐵(𝐿)−1𝑥𝑖𝑡 . Hence, the signals and the fundamental innovations contain the
same amount of information.

Now we are ready to spell out the forecast about 𝑎𝑡 . By the Wiener-Hopf prediction formula,¹⁰

E𝑖𝑡[𝑎𝑡] =
[ [

ℎ(𝐿)
1−𝜌𝐿 0

] [
1

1−𝜌𝐿−1 𝜎
] ′

︸                          ︷︷                          ︸
Cov(𝑎𝑡 ,𝑥𝑖𝑡 )

𝐵
(
𝐿−1)−1 𝜆

𝜌𝜎2

]
+
𝐵(𝐿)−1︸                         ︷︷                         ︸

V(𝑥𝑖𝑡 )−1

𝑥𝑖𝑡 , (2.9)

=
𝜆

𝜌𝜎2(1 − 𝜆𝐿)(𝐿 − 𝜆)
(
ℎ(𝐿)𝐿 − ℎ(𝜆)𝜆1 − 𝜌𝐿

1 − 𝜌𝜆

)
𝑥𝑖𝑡 (2.10)

The forecasting formula (2.9) is reminiscent of an OLS estimator. The first term corresponds to the
covariance between 𝑎𝑡 and the signal, and the second term corresponds to the inverse of the variance
of the signal.¹¹ Different from the standard OLS estimator, the forecast is conditional on information
up to time 𝑡, excluding the use of the signals realized in the future. The truncation of the sample is
achieved by the annihilation operator, +, which eliminates 𝐿 with negative powers. Note that this
step is valid only if the last term, 𝐵(𝐿)−1𝑥𝑖𝑡 , is uncorrelated over time so that the best forecast of its
future values is zero. This is indeed the case as by construction, 𝐵(𝐿)−1𝑥𝑖𝑡 = 𝑤𝑖𝑡 , which is serially
uncorrelated forecast errors, and it explains why the fundamental representation is needed.

To obtain the forecast formula (2.10), it does not require the particular law of motion of ℎ(𝐿). This
allows us to proceed without specifying the state variables, and solve for ℎ(𝐿) directly instead of a
guess-and-verify approach. Notice that a new constant ℎ(𝜆) appears, the value of which remains
unknown. It turns out that this constant plays an important role in determining the existence and
uniqueness of the solution.

¹⁰Note that in terms of the underlying shocks,

𝑎𝑡 =
[
ℎ(𝐿)

1−𝜌𝐿 0
] [

𝜂𝑡 𝑢𝑖𝑡
]′ , and 𝑥𝑖𝑡 =

[
1

1−𝜌𝐿 1
] [

𝜂𝑡 𝑢𝑖𝑡
]′ .

¹¹To be precise,
[
ℎ(𝐿)

1−𝜌𝐿 0
] [

1
1−𝜌𝐿−1 𝜎

]′
is a cross-covariance generating function between 𝑎𝑡 and 𝑥𝑖𝑡 and 𝜆

𝜌𝜎2 𝐵(𝐿)𝐵
(
𝐿−1)

is an auto-covariance generating function of 𝑥𝑖𝑡 .
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Fixed Point Problem. Now we solve for the policy function ℎ(𝐿). Using the best response function
(2.1) and the forecast formulas (2.5) and (2.10), it follows that

ℎ(𝐿)𝑥𝑖𝑡 = (1 − 𝛼)
[ (

1 − 𝜆
𝜌

)
1

1 − 𝜆𝐿
𝑥𝑖𝑡

]
+ 𝛼

[
𝜆

𝜌𝜎2(1 − 𝜆𝐿)(𝐿 − 𝜆)
(
ℎ(𝐿)𝐿 − ℎ(𝜆)𝜆1 − 𝜌𝐿

1 − 𝜌𝜆

)
𝑥𝑖𝑡

]
.

This condition needs to hold for all possible realizations of the signal 𝑥𝑖𝑡 . After combining like terms,
we have(

(𝐿 − 𝜆)(1 − 𝜆𝐿) − 𝛼𝜆

𝜌𝜎2 𝐿
)
ℎ(𝐿) = (1 − 𝛼)

(
1 − 𝜆

𝜌

)
(𝐿 − 𝜆) − 𝛼

𝜆2

𝜌𝜎2(1 − 𝜌𝜆) ℎ(𝜆)(1 − 𝜌𝐿). (2.11)

In condition (2.11), the constant ℎ(𝜆) remains to be determined. There is a continuum of potential
solutions to ℎ(𝐿) indexed by the choice of ℎ(𝜆). Meanwhile, note that the term

(
(𝐿 − 𝜆)(1 − 𝜆𝐿) − 𝛼𝜆

𝜌𝜎2 𝐿
)

on the left-hand side is a second-order polynomial in 𝐿 with two roots 𝜗 ∈ (0, 1) and 𝜗−1

𝜗 =
1
2


(

1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌𝜎2

)
−

√(
1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌𝜎2

)2

− 4
 .

To make sure ℎ(𝐿) is an analytic function without any pole inside the unit circle,¹² the constant ℎ(𝜆)
has to be set such that 𝜗 is a root of the right-hand side of equation (2.11) as well, that is

(1 − 𝛼)
(
1 − 𝜆

𝜌

)
(𝜗 − 𝜆) − 𝛼

𝜆2

𝜌𝜎2(1 − 𝜌𝜆) ℎ(𝜆)(1 − 𝜌𝜗) = 0.

There exists a unique ℎ(𝜆) satisfying this condition, which can then be substituted into condition (2.11)
to yield the policy function and the the law of motion of 𝑎𝑡¹³

ℎ(𝐿) =
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
, and 𝑎𝑡 = 𝜗𝑎𝑡−1 +

(
1 − 𝜗

𝜌

)
𝜉𝑡 . (2.12)

Now it is self-evident that the right state variables for economists to keep track of the evolution of
the aggregate outcome 𝑎𝑡 are simply, (𝑎𝑡−1 , 𝜉𝑡), the current fundamental and the outcome in the last
period. The effects of all the higher-order expectations on the equilibrium outcome are therefore
incorporated in the variable 𝜗, which we explore further in Section 4.1.

This example provides an elementary illustration of the method in solving models with dispersed
information. The key step is to connect the Kalman filter with the Wiener filter in forecasting the
endogenous aggregate outcomes, which yields a finite-state representation of the equilibrium and
overcomes the difficulty in keeping track of all the higher-order expectations.

¹²With any pole inside the unit circle, the policy rule requires to use of future signals, which is inconsistent with agents’
information constraint. For example, 1

1−𝜗−1𝐿 𝑥𝑖𝑡 = 𝑥𝑖𝑡 + 𝜗𝑥𝑖,𝑡+1 + 𝜗2𝑥𝑖 ,𝑡+2 + . . . .
¹³Rondina (2008) obtains a similar analytical solution for models with independent value best response.
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3. RATIONAL EXPECTATIONS MODELS WITH DISPERSED INFORMATION

In this section, we extend the basic idea to models with much more general information and pay-
off structures. We provide the formula for equilibrium policy rule and characterize the equilibrium
properties when informational friction and strategic interaction are jointly present.

3.1 Setup

We restrict our attention to models in which all the variables depend on the underlying Gaussian
shocks in a linear way. The input of the model includes two parts: the signal process and a system
of equations describing the conditions which the variables need to satisfy. There are three types of
variables involved here: an individual agent’s own actions, the actions chosen by other agents, and
some exogenous fundamentals.

Best Response. In each period 𝑡, individual agent 𝑖 chooses 𝑟 different actions,

a𝑖𝑡 ≡
[
𝑎1
𝑖𝑡 . . . 𝑎𝑟𝑖𝑡

] ′
.

The best response is
a𝑖𝑡 = E𝑖𝑡[ξ𝑖𝑡] + E𝑖𝑡[β(𝐿)a𝑖𝑡] + E𝑖𝑡[γ(𝐿)a𝑡]. (3.1)

The vector ξ𝑖𝑡 is the vector of exogenous fundamental that may depend on agent 𝑖’s individual states,
and the vector a𝑡 ≡

∫
a𝑖𝑡 is the vector of aggregate outcomes in the economy.

In condition (3.1), we allow β(𝐿) and γ(𝐿) to be two-sided polynomials in 𝐿. For example, if 𝛾(𝐿)
contains 𝐿 with negative (positive) power, it implies agents’ action depends on future (past) actions
of others. In this specification, β(𝐿) determines how an agent’s action depends on her own future
or past actions, which captures the partial equilibrium (PE) considerations. On the other hand, γ(𝐿)
determines how an agent’s action depends on the current, the past, or the future aggregate outcomes
in the economy, which captures the general equilibrium (GE) considerations. It nests the commonly
used best responses in the literature as special cases, and we further extend it to network games with
in Appendix A.7.

Complex Types of Higher-Order Expectations. Similar to the static beauty-contest game in Sec-
tion 2, higher-order expectations naturally arise with incomplete information. However, the types of
higher-order expectations are much richer due to the dynamic nature of strategic complementarities
and the across-action dependence in multivariate systems. To further appreciate the richness of vari-
ous types of higher-order expectations underneath condition (3.1), we look into the details of it in two
special cases.

First, consider a univariate best response (𝑟 = 1) with static and forward-looking complementarity,

𝑎𝑖𝑡 = E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛽E𝑖𝑡[𝑎𝑖𝑡+1] + 𝛾E𝑖𝑡[𝑎𝑡+1], (3.2)
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where 𝛽(𝐿) = 𝛽𝐿−1 , 𝛾(𝐿) = 𝛼 + 𝛾𝐿−1, and 𝜉𝑖𝑡 = 𝜉𝑡 . This type of best response nests the incomplete-
information version of the dynamic IS curve, the New Keyenesian Philips curve, or the asset pricing
equation, as in Allen, Morris, and Shin (2006), Nimark (2008), and Angeletos and Huo (2021), and the
commonly used static beauty contests. Let 𝜁𝑡 ≡ 1

1−𝛽𝐿𝜉𝑡 , the set of relevant higher-order expectations
include

E𝑡1[E𝑡2[· · · [E𝑡ℎ [𝜁𝑡+𝑘] · · · ]]],

for any 𝑘 ≥ 0, ℎ ∈ {2, ..., 𝑘}, and {𝑡1 , 𝑡2 , ..., 𝑡ℎ} such that 𝑡 = 𝑡1 < 𝑡2 < ... < 𝑡ℎ = 𝑡 + 𝑘. Considering
the higher-order expectations on the future fundamental up to 𝑘 periods ahead, there are 𝑘 types of
second-order expectations, plus 𝑘×(𝑘+3)

2 types of third-order expectations, plus (ℎ−2)𝑘(𝑘+1)
2 + 𝑘 types of

ℎ-th order expectations for all ℎ ≤ 𝑘.
Second, consider a multivariate best response (𝑟 > 1) where agent 𝑖’s multiple actions are given

by 
𝑎1
𝑖𝑡
...

𝑎𝑟𝑖𝑡

 =


𝜔1
...

𝜔𝑟

 E𝑖𝑡[𝜉𝑡] +

𝛾11 . . . 𝛾1𝑟
...

. . .
...

𝛾1𝑟 . . . 𝛾𝑟𝑟



𝑎1
𝑡
...

𝑎𝑟𝑡

 .
This type of best response can represent the the incomplete-information NK model where the aggre-
gate demand and aggregate supply blocks interact with each other (Angeletos and Lian, 2018), or an
incomplete-information multi-sector production network model (La’O and Tahbaz-Salehi, 2020). In
matrix form, the aggregate outcomes can be expressed as

a𝑡 =
∞∑
𝑘=0

γ 𝑘ωE
𝑘+1[𝜉𝑡].

As an example, when ω =

[
1
0

]
, and γ =

[
0 𝛼

𝛼 0

]
, the relevant higher-order expectations are

{
E

1[𝜉𝑡],E3[𝜉𝑡],E5[𝜉𝑡], . . .
}
, and

{
E

2[𝜉𝑡],E4[𝜉𝑡],E6[𝜉𝑡], . . .
}
,

for 𝑎1
𝑡 and 𝑎2

𝑡 , respectively. As γ 𝑘ω can capture various types of weighted averages of higher-order
expectations, the outcomes therefore display much richer dynamics than the single-action case in
Section 2.

Information Structure. The process of the fundamental ξ𝑖𝑡 is specified as

ξ𝑖𝑡 = θ(𝐿)s𝑖𝑡 = θ̃(𝐿)∏𝑁𝜌

𝑘=1(1 − 𝜌𝑘𝐿)
s𝑖𝑡 , (3.3)
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The auto-regressive parameters {𝜌𝑘} with |𝜌𝑘 | < 1 determine the persistence of the fundamental and
the external propagation of the equilibrium outcomes. The underlying vector of Gaussian shocks
s𝑖𝑡 ∼ 𝒩(0, I) is serially uncorrelated with length 𝑚, which contains both common and idiosyncratic
components. In our setup, the existence of the idiosyncratic shocks is the root of information in-
completeness. The aggregate outcome, on the other hand, only depends on the common shocks as
idiosyncratic shocks simply wash out in aggregate.

Each period, instead of observing the fundamental directly, the individual agent 𝑖 receives a vector
of signals about the underlying state of the economy. We denote the stochastic process of the signals
as follows

x𝑖𝑡 = M(𝐿)s𝑖𝑡 , (3.4)

wherex𝑖𝑡 is the vector of signals with length 𝑛. In this section, we focus on the exogenous-information
economy, in the sense that M(𝐿) is exogenously specified. In contrast, when signals contain variables
that are determined in equilibrium, its information content is endogenous and the structure of M(𝐿)
is part of the equilibrium. However, it is important to note that for an individual agent, she always
takes the process M(𝐿) as exogenously given, regardless whether it is determined in equilibrium or
not, a point we revisit in Section 5.

With all the elements in the environment specified, it is straightforward to define the equilibrium
of this economy.

Definition 1. Given the exogenous signal process (3.4), a Bayesian-Nash equilibrium is a policy rule a𝑖𝑡 =

h(𝐿)x𝑖𝑡 that satisfies the best response condition (3.1), and where the aggregate outcome is consistent with
individual agents’ choice: a𝑡 =

∫
a𝑖𝑡 .

As aforementioned, the entire history of signals could be relevant in forecasting the fundamental
and the aggregate outcome, and it is not clear ex ante whether there exists a set of sufficient statistics
to summarize the history. In this section, we impose the assumption that the signals follow an ARMA
process and the primitives in the best response are rational functions of 𝐿. As we shall show momen-
tarily, the policy rule in equilibrium inherits this property and only a finite number of state variables
are required. As a by-product, the seemingly complex sum of the infinite dynamic higher-order ex-
pectations follows a relatively simple process as well.

Assumption 1. The signal x𝑖𝑡 follows a finite ARMA process, and all the elements in matrices β(𝐿), γ(𝐿),
and θ(𝐿) are rational functions of 𝐿.

3.2 Fundamental Representation and Wiener-Hopf prediction formula

Parallel to the analysis in Section 2, we start with inference problems using the Kalman filter. This
step helps construct the fundamental representation of the signal process, which builds a bridge to
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the Wiener filter. Different from Section 2, we now allow a multivariate system, resulting in a more
involved procedure.

Given a signal process (3.4), there always exists an alternative representation of the same signal
process

x𝑖𝑡 = B(𝐿)w𝑖𝑡 , (3.5)

such that B(𝐿) is an invertible,¹⁴ and w𝑖𝑡 is a vector of serially uncorrelated Gaussian shocks with
covariance matrix V which can be constructed by the history of signals w𝑖𝑡 = B(𝐿)−1x𝑖𝑡 . This is the
fundamental representation, which shares the same auto-covariance generating function as the orig-
inal representation

ρ𝑥𝑥(𝐿) = M(𝐿)M′(𝐿−1) = B(𝐿)VB′(𝐿−1).

The important property of the fundamental representation is that the sequence of the signal x𝑡𝑖 con-
tains the same amount of information as the sequence of the fundamental innovations w𝑡

𝑖 . With this
representation, one can apply the following Wiener-Hopf prediction formula.

Wiener-Hopf Prediction Formula. Let 𝑓𝑡 be a univariate co-variance stationary process 𝑓𝑡 = ϕ(𝐿)s𝑖𝑡 , where
ϕ(𝐿) = ∑∞

𝑘=−∞ϕ𝑘𝐿𝑘 . The optimal prediction of 𝑓𝑡 is given by

E𝑖𝑡 [ 𝑓𝑡] =
[
ϕ(𝐿)M′(𝐿−1)B′(𝐿−1)−1

]
+
V−1B(𝐿)−1x𝑖𝑡 . (3.6)

Proof. See Appendix A.2 for the proof. □

Notice that the exact law of motion of 𝑓𝑡 is not required for the forecasting problem. This is nec-
essary for solving the equilibrium policy rule as the law of motion of the aggregate outcome is not
known ex ante.

One the one hand, the Kalman filter is inadequate for the forecasting problem as it requires the
exact law of motion ex ante. On the other hand, the Kalman filter helps to construct the fundamental
representation Kalman filter, despite the additional complication of a multivariate system. Towards
this goal, it is necessary to set up the state-space representation of the signal process.

Lemma 3.1. Under Assumption 1, the signal process admits a state-space representation given by

z𝑖𝑡 = Fz𝑖𝑡−1 +𝚽s𝑖𝑡 , and x𝑖𝑡 = Hz𝑖𝑡 +𝚿s𝑖𝑡 , (3.7)

where the eigenvalues of F all lie inside the unit circle.

The following theorem then provides the desired fundamental representation based on the steady-
state Kalman filter.

¹⁴This is equivalent to that B(𝐿) is a square matrix and the determinant of B(𝐿) does not contain any roots within the unit
circle.
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Fundamental Representation. Given the state-space representation 3.7, there exist matrices P and K that
satisfy

P = F[P − PH′(HPH′ +𝚿𝚿′)−1HP]F′ +𝚽𝚽′, and K = PH′(HPH′ +𝚿𝚿′)−1. (3.8)

The fundamental representation is given by

B(𝐿) = I + H[I − F𝐿]−1FK𝐿, B(𝐿)−1 = I − H[I − (F − FKH)𝐿]−1FK𝐿, (3.9)

associated with the co-variance matrix V

V = HPH′ +𝚿𝚿′. (3.10)

Proof. See Chapter 13.5 in Hamilton (1994). □

In equation (3.8), K is the celebrated Kalman gain matrix. In equation (3.9), the eigenvalues of F−
FKH determine the persistence of prior about the underlying state, which in turn shape the learning
dynamics. To see this in a more explicit manner, we unpack formula (3.6) when Assumption 1 holds.

Proposition 3.1. Under Assumption 1 and assume that 𝑓𝑡 = ϕ(𝐿)s𝑖𝑡 = ∑∞
𝑘=0ϕ𝑘s𝑖,𝑡−𝑘 . The optimal prediction

of 𝑓𝑡 is¹⁵

E𝑖𝑡[ 𝑓𝑡] =ϕ(𝐿)M′(𝐿−1)B′(𝐿−1)−1VB(𝐿)−1x𝑖𝑡−(
𝑢∑
𝑘=1

1
𝐿 − 𝜆𝑘

ϕ(𝜆𝑘)G(𝜆𝑘)
𝜆𝑣−𝑢𝑘

∏
𝜏≠𝑘(𝜆𝑘 − 𝜆𝜏) +

𝑣−𝑢−1∑
𝑘=0

1
𝑘!𝐿𝑣−𝑢−𝑘

[
ϕ(𝐿)G(𝐿)∏𝑢
𝜏=1(𝐿 − 𝜆𝜏)

] (𝑘)
𝐿=0

)
V−1B(𝐿)−1x𝑖𝑡 . (3.11)

where {𝜆𝑘}𝑢𝑘=1 are non-zero eigenvalues of F − FKH which lie inside the unit circle, 𝑣 is the dimension of F,
and G(𝐿) is a polynomial matrix in 𝐿 with finite degree derived in Appendix A.4.

The component in the first line of (3.11) corresponds to the optimal forecast when both past and
future signals are available. The component in the second line of (3.11) is the necessary adjustment
due to the annihilation operator, +, when future signals are prohibited. We provide a formula (A.1)
implementing the annihilation operator in Appendix A.3. Note that B(𝐿)−1 contains the component

1∏𝑢
𝑘=1(1−𝜆𝑘𝐿) , which implies that the eigenvalues of F − FKH belong to the AR parameters of E𝑖𝑡[ 𝑓𝑡],

adding additional persistence due to learning.
An alternativeway to construct the fundamental representation is to conduct spectral factorization

on the auto-covariance generating function proposed by Rozanov (1967), which is used in Taub (1989),
Rondina (2008), Miao, Wu, and Young (2021), and so on. This method requires to remove inside poles
of B(𝐿) by Gaussian elimination and polynomial spectral factorization to make sure B(𝐿) does not

¹⁵In equation (3.11), we use [𝑔(𝐿)](𝑘)𝐿=𝛿 to denote the 𝑘-th derivative of 𝑔(𝐿) evaluated at 𝐿 = 𝛿.
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contain negative 𝐿 in expansion, and to sequentially remove inside roots of det[B(𝐿)] by Blaschke
factor matrices to make sure that the spectral factorization is canonical (or B(𝐿) is invertible).¹⁶ Our
method has twomain advantages: first, the Kalman filter is easy and robust to implement numerically,
and therefore is better suited for quantitative analysis; second, the explicit representation from the
Kalman filter allows a general closed-form formula (3.11) for the forecasts. This generality facilitates
the proof the Theorem 1 and Corollary 3.1 for any stationary ARMA signal process.

3.3 Equilibrium Policy Rule

In this subsection, we builds on the tools developed earlier to solve for the equilibrium policy rule.
Supposing individual agents’ action is a𝑖𝑡 = h(𝐿)𝑥𝑖𝑡 , the aggregate outcome can be expressed as

a𝑡 =
∫
a𝑖𝑡 = h(𝐿)M(𝐿)𝚲s𝑖𝑡 , (3.12)

where 𝚲 is the diagonal matrix that selects the common shocks, i.e.,
∫
s𝑖𝑡 = 𝚲s𝑖𝑡 . When 𝚲 ≠ I, the

information is dispersed in the economy.
Parallel to the analysis in Section 2, given a perceived law of motion (3.12), agents can form expec-

tations about the fundamentals, the individual actions, and the aggregate outcome via the forecast
rule (3.11). The best response then leads to a functional equation for the equilibrium policy rule. In-
stead of looking for the sequences of infinite coefficients on how to use the history of signals, we can
look for a finite number of analytic functions, as shown in the following proposition.

Lemma 3.2. If h(𝐿) is an equilibrium policy rule, then it satisfies the following condition

T(𝐿)vec[h′(𝐿)] = D1(𝐿)ψ + D2(𝐿) (3.13)

where T(𝐿) is an 𝑟𝑛 × 𝑟𝑛 matrix given by

T(𝐿) ≡ (β(𝐿) − I) ⊗ (M(𝐿−1)M′(𝐿)) + γ(𝐿) ⊗ (M(𝐿−1)𝚲M′(𝐿)), (3.14)

D1(𝐿) and D2(𝐿) are exogenous matrices constructed in Appendix A.5, and ψ is a vector of undetermined
constants. Particularly, D1(𝐿) is with full column rank 𝑁𝜓.

The structure of the system (3.13) resembles that of the pure forecasting problem in (3.11). On the
left-hand side, T(𝐿) captures both the intertemporal dependence on an individual agent’s own action
and the dynamic coordination with other agents’ actions. The right-hand side collects the forecasts of
the fundamental and the necessary adjustments due to the annihilation operator. Similar to the second

¹⁶When M(𝐿) is a squarematrix, one only needs to use the Blaschke factormatrix to flip out the inside roots of det[ρ𝑥𝑥(𝐿)],
see Kasa (2000), Kasa, Walker, and Whiteman (2014), Rondina and Walker (2021), Acharya, Benhabib, and Huo (2021) for
example.
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line in (3.11), the inference of the endogenous variables yields constantswhich are linear combinations
of h(𝜆𝑘),h(𝜏)(0), and so on. There are 𝑁𝜓 such endogenous constants that remain to be determined.

Condition (3.13) also helps better understand the role of Assumption 1. Directly, all the elements
in T(𝐿) are rational functions in 𝐿 by construction. Indirectly, the forecast rule (3.11) reveals that all
the elements in D1(𝐿) and D2(𝐿) are rational functions in 𝐿 as well. Even though ex-ante the form
of h(𝐿) is unknown, to satisfy condition (3.13), it is clear that the elements in h(𝐿) must inherit the
property of the primitives and be rational functions in 𝐿 as well.

To obtain the policy rule, one may attempt to simply invert matrix T(𝐿) in condition (3.13)

vec[h′(𝐿)] = adj[T(𝐿)]
det[T(𝐿)] (D1(𝐿)ψ + D2(𝐿)).

This step is valid only if all elements of the policy rule h(𝐿) is an analytic function in 𝐿 which does
not contain any pole inside the unit circle, that is, agents only use current or past signals. The set of
constants ψ can be used to remove the inside roots of det[T(𝐿)].¹⁷ As a result, the existence and the
uniqueness of the equilibrium hinges on the number of free constants versus the number of the inside
roots of det[T(𝐿)].

Among all the roots of det[T(𝐿)], we denote

◦ {𝜁1 , . . . , 𝜁𝑁𝜁 } as the 𝑁𝜁 roots that lie inside the unit circle, and

◦ {𝜗−1
1 , . . . , 𝜗−1

𝑁𝜗
} as the 𝑁𝜗 roots that lie outside the unit circle.

The equilibrium policy rule is then given below.

Theorem 1 (Solution). Generically, there exists a unique equilibrium iff 𝑁𝜓 = 𝑁𝜁, which is given by

vec[h(𝐿)] = T(𝐿)−1(D1(𝐿)ψ + D2(𝐿)),

where ψ satisfies the condition that for 𝑖 ∈ {1, . . . , 𝑟𝑛} and 𝑗 ∈ {1, 2, . . . , 𝑁𝜓},

det
[
T1(𝜁 𝑗) . . . T𝑖−1(𝜁 𝑗) D1(𝜁 𝑗)ψ + D2(𝜁 𝑗) T𝑖+1(𝜁 𝑗) . . . T𝑟𝑛(𝜁 𝑗)

]
= 0.

Proof. See Appendix A.6 for the construction of ψ and a detailed description of the condition for
equilibrium existence and uniqueness. □

The condition for a uniqueness equilibrium is reminiscent of the one in Whiteman (1983), and
we generalize the model environment to incorporate dispersed information and coordination. The
main difficulty in solving the problem in the time domain is to identify the right state variables that
summarize the relevant history. By applying the Wiener filter in the frequency domain, one does not
need to identify the state variables ex-ante and the task is transformed into solving for a particular

¹⁷As explained in Appendix A.5, the poles of h(𝐿) cannot come from D1(𝐿)ψ + D2(𝐿).
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analytic function. It turns out that this problem remains tractable, and the dependence on the history
is encoded in {𝜗1 , . . . , 𝜗𝑁𝜗}.
Extension to Network Games. We conclude this subsection by pointing out an important extension.
So far, we have focused on environments in which agents’ actions differ from each other only due to
the realizations of idiosyncratic shocks. However, the method we have developed and the main theo-
retical results easily extend to more complicated models where agents also differ in payoff structures
and the information structures. For example, firms in different industries are interconnected through
supply chains, but they may not share the same information about the TFP growth in a particular sec-
tor; savers’ and borrowers’ expenditures both depend on aggregate demand and real interest rates,
but they may have different expectations about the inflation rates. Effectively, our method can be
applied to these types of network games with dispersed information, given that Assumption 1 holds
for all agents. In Appendix A.7, we show how to construct the counterpart of condition (3.13) in such
network games with a richer types of heterogeneities.¹⁸

3.4 Implications

In this subsection, we discuss further the implications of our results on the information incomplete-
ness, the GE feedback effects, and the dynamic properties of the equilibrium outcomes.

Finite-State Representation. A direct implication of Theorem 1 is that the equilibrium outcomes
admit a finite-state recursive representation.

Corollary 3.1 (Finite-state representation). The equilibrium outcome permits a finite ARMA representation

a𝑖𝑡 =
a(𝐿)∏𝑁𝜗

𝑘=1(1 − 𝜗𝑘𝐿) · ∏𝑁𝜌

𝑘=1(1 − 𝜌𝑘𝐿)
s𝑖𝑡 (3.15)

where a(𝐿) is a lag polynomial matrix with a finite degree, {𝜗𝑘} is the vector of endogenous coefficients, and
{𝜌𝑘} is the vector of exogenous coefficients from (3.3).

This result highlights that when signals follow finite ARMA processes, the equilibrium outcome
inherits this property. In contrast to the conventional wisdom that it is necessary to keep track of the
entire history of signals when information is dispersed and persistent (Townsend, 1983), Corollary 3.1
instead shows that a finite number of statistics are sufficient to summarize the history in equilibrium.

The propagation dynamics are determined by two set of parameters: first, {𝜌𝑘} are the AR param-
eters of the exogenous fundamental, which can be viewed as the external propagation mechanism;
second, {𝜗𝑘} are determined in equilibrium, which can be viewed as the endogenous propagation
mechanism. It is important to note that the parameters {𝜆𝑘} that determine the persistence of fore-
casts in (3.11) do not enter the equilibrium outcome, though they show up for each of the higher-order

¹⁸Angeletos and Huo (2021) utilize this result in the context of a HANK model with forward-looking complementarities.
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expectations. The seemingly magical cancellation of {𝜆𝑘} makes a finite-state representation possible
and reduces the dimension of state variables, a property we shall revisit in Section 5.2.

As a byproduct, Corollary 3.1 shows that the guess-and-verify approach inWoodford (2003)works
beyond the particular model environment. Furthermore, it helps researchers to determine the right
law of motion to conjecture if they pursue the guess-and-verify approach for more general model
economies.

Role of Incomplete Information and GE. Equation (3.14) summarizes how the PE consideration,
β(𝐿), theGE consideration, γ(𝐿), and the informational friction, M(𝐿), jointly shape the roots {𝜗1 , . . . , 𝜗𝑁𝜗}.
The following result establishes the necessary condition for their interactive effects.

Corollary 3.2 (Incompleteness and GE). The persistence of equilibrium outcome depends jointly on the in-
formational friction and the payoff structure only if: (1) information is incomplete, 𝚲 ≠ I, and (2) the GE
consideration is present, γ(𝐿) ≠ 0.

To better understand this result, consider the following special cases. First, suppose that agents
have perfect information, which corresponds to the frictionless case with a representative agent. In
this case, agents can observe all the shocks, or M(𝐿) = I, which implies

det[T(𝐿)] = det[β(𝐿) + γ(𝐿) − I].

Therefore, only the payoff structure matters for the persistence, such as the magnitude of adjustment
costs or consumption habit.

Secondly, suppose that agents have common information (not necessarily perfect), i.e., 𝚲 = I,
an assumption imposed by most DSGE literature. In this case, all agents are identical to each other.
Similar to the first case, the distinction between PE andGE becomes irrelevant, and only the composite
effects β(𝐿) + γ(𝐿) enters the determinant of the matrix T(𝐿)

det[T(𝐿)] = det[β(𝐿) + γ(𝐿) − I] · det
[
M(𝐿−1)M′(𝐿)] .

Clearly, in this case, the roots of det[T(𝐿)] are determined separately by the payoff structure and the
informational friction.

Thirdly, suppose the coordination motive or the GE feedback effect is muted, γ(𝐿) = 0, but in-
formation may still be dispersed. In this case, agents only care about their own fundamentals, and
whether the information is private or not is irrelevant. Particularly, the determinant of thematrix T(𝐿)
becomes

det[T(𝐿)] = det[β(𝐿) − I] · det
[
M(𝐿−1)M′(𝐿)] .

Corollary 3.2 underscores the importance of higher-order expectations in modifying the equi-
librium behavior. In the absence of either information incompleteness or GE considerations, only
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first-order uncertainty matters for equilibrium outcomes, as in the aforementioned special cases. The
interactive effects take place exactly when higher-order uncertainty is present.

Dimension Reduction of Higher-Order Expectations. The last implication can be viewed inde-
pendent of any equilibrium concept, but only as a property of the linear projection. Essentially, the
weighted average of infinite higher-order expectations can be much simpler than it appears to be.

We impose the following condition on the primitives in the best response, which helps guarantee
the existence of a uniqueness equilibrium.

Assumption 2. Agents are forward-looking, that is,β(𝐿) = ∑∞
𝑘=0 β𝑘𝐿

−𝑘 andγ(𝐿) = ∑∞
𝑘=0 γ𝑘𝐿

−𝑘 . In addition,
det[I − β(𝐿)] only has inside roots, and all eigenvalues of I − β(1) − γ(1) are inside the unit circle.

Corollary 3.3 (HOE). Under Assumption 1 and 2, the infinite sum of higher-order expectations follows a finite
ARMA process

a𝑡 =
∞∑
𝑘=0

F
𝑘
𝑡 [(I − β(𝐿))−1ξ𝑖𝑡] = a(𝐿)∏𝑁𝜗

𝑘=1(1 − 𝜗𝑘𝐿) · ∏𝑁𝜌

𝑘=1(1 − 𝜌𝑘𝐿)
𝚲s𝑖𝑡 ,

where F
𝑘+1[𝑋] = E[(I − β(𝐿))−1γ(𝐿)F𝑘[𝑋]].

As already mentioned, the complexity of higher-order expectations is increasing with its order in
the sense that more state variables are required to describe their laws of motion. To compute each of
the infinite higher-order expectations independently, an infinite number of state variables are needed.
Corollary 3.3 shows that the infinite sum of these higher-order expectations magically reduces to a
much simpler object that follows a finite ARMA process. In a special case where the strategic com-
plementarity is static, i.e., γ(𝐿) = γ, this equivalence takes a particularly sharp form that the sum of
higher-order expectations is the same as its corresponding first-order expectation with more noisy
signals, as shown in Huo and Pedroni (2020).

This equivalence also helps reconcile two different perspectives on the rational expectations equi-
librium with dispersed information. On the one hand, an agent in the economy only needs to know
the law of motion of the aggregate outcome. On the other hand, economists may find it more in-
formative to think about all the higher-order expectations, which is much more sophisticated than
what agents need to make their decisions. Corollary 3.3 connects the two approaches by showing the
apparent complexity in the latter approach reduces by a large extent at the fixed point.

4. APPLICATIONS

In this section, we demonstrate how our method developed in Section 3 can help obtain applied
lessons. We start by showing that the finite-state representation makes it possible to derive closed-
form solutions and prove comparative statics. We then contrast our solution under rational expecta-
tions with an alternative approach in dealing with heterogeneous beliefs both in terms of allocation
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and the properties on forecasts. We also utilize the generality of the method to incorporate belief
distortions into models with incomplete information, which allows one to explore their general equi-
librium implications.

4.1 Deriving Comparative Statics

In this subsection, we revisit the beauty-contest model (2.1) introduced in Section 2

𝑎𝑖𝑡 = (1 − 𝛼)E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑎𝑡],

and extend it to allow agents to observe a public signal (𝑥1
𝑖𝑡) in addition to the private signal (𝑥2

𝑖𝑡)

𝑥1
𝑖𝑡 = 𝜉𝑡 + 𝜀𝑡 , and 𝑥2

𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 .

where 𝜀𝑡 ∼ 𝒩(0, 𝜏−1
𝜀 ) represents the common noise and 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜏−1

𝑢 ) is the private noise.¹⁹ In a
similar framework, Lorenzoni (2009) and Angeletos and La’O (2010) solve the model numerically and
highlight the response to the common noise. This generates variations in the aggregate outcome that
are independent of the fundamental, which can be interpreted as animal spirits or sentiments. In our
setup, applying Theorem 1 leads to the following characterization of the equilibrium in closed form.

Proposition 4.1. The aggregate outcome is given by

𝑎𝑡 =
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝜉𝑡 + 𝜏𝜀

𝜏𝜀 + (1 − 𝛼)𝜏𝑢
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝜀𝑡 (4.1)

where the persistence 𝜗 ∈ [0, 𝜌] is given by

𝜗 =
1
2


(

1
𝜌
+ 𝜌 + 𝜏𝜀 + (1 − 𝛼)𝜏𝑢

𝜌

)
−

√(
1
𝜌
+ 𝜌 + 𝜏𝜀 + (1 − 𝛼)𝜏𝑢

𝜌

)2

− 4
 . (4.2)

Relative to the perfect information benchmark, 𝑎∗𝑡 = 𝜉𝑡 , the incomplete-information version (4.1)
modifies it in the following way: (1) the response to the fundamental shock displays a dampened im-
pact effect and amore gradual build up, both of which are governed by 𝜗. (2) Besides the fundamental
shock, the common noise also contributes to aggregate fluctuations. Proposition 4.1 immediately re-
veals that the fluctuations due to the common noise share the same persistence 𝜗, but the impact
response depends on the amount of information in the public domain relative to that in the private
domain.

The key variable that determines the dynamics of the aggregate outcome is 𝜗, which corresponds
to the reciprocal of the outside root of det[T(𝐿)]. Note that 𝜗 depends on all the structural parame-

¹⁹In Appendix A.11, we describe in details how to map the primitives in this model into the general framework outlined
in Section 3.
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ters, and it summarizes the interaction between incomplete information and GE consideration. For
example, the precision of the private signal, 𝜏𝑢 , enters 𝜗 with an additional discounting according to
1−𝛼. The coordinationmotivemakes the private signal less useful in inferring the aggregate outcome
compared with the public signal.

The closed-form solution facilitates a transparent comparative statics analysis. The following
proposition illustrates how the persistence and volatility of the aggregate outcome vary with infor-
mational friction and GE consideration.

Proposition 4.2. 1. The endogenous persistence 𝜗 is increasing in 𝛼.

2. The endogenous persistence 𝜗 is decreasing in 𝜏𝑢 and 𝜏𝜀. Furthermore, changes in 𝜏𝜀 have a larger
(smaller) impact on 𝜗 than 𝜏𝑢 when 𝛼 > 0(< 0)

𝜕𝜗

𝜕𝜏𝑢
= (1 − 𝛼) 𝜕𝜗

𝜕𝜏𝜀
.

3. The volatility of aggregate outcome driven by the common noise, V[𝑎𝑡 |𝜉𝑡], is increasing in 𝛼, while that
driven by the fundamental, V[𝑎𝑡 |𝜀𝑡], is decreasing in 𝛼.

Part 1 of Proposition 4.2 shows that fixing the informational friction, the endogenous persistence
is increasing in the GE consideration 𝛼. Woodford (2003) emphasizes that higher-order expectations
respondmore sluggishly comparedwith first-order expectations, and the aggregate outcomemaydis-
play a hump-shaped response when the reliance on the former is sufficiently strong. This additional
inertia is exactly captured by the term 1

1−𝜗𝐿 in condition (4.1).
Part 2 of Proposition 4.2 states that the endogenous persistence is amplifiedwith a higher degree of

informational friction. However, changing the informational friction in the public domain versus that
in the private domain have differential impacts on 𝜗, as the relative dependence on the two signals is
shaped by the need to be in line with others.

The last part of Proposition 4.2 looks into the conditional volatilities. As captured by 𝜏𝜀
𝜏𝜀+(1−𝛼)𝜏𝑢 ,

a larger 𝛼 leads to more intensive use of public signal, and therefore a larger loading on the com-
mon noise. At the same time, as captured by 1 − 𝜗

𝜌 , a larger 𝛼 also leads to more weight on higher-
order expectations and amore dampened response overall. Despite the presence of competing forces,
the analytical result allows us to prove that the volatility conditional on the fundamental (the noise-
driven fluctuations) is always increasing in 𝛼, and the volatility conditional on the common noise (the
fundamental-driven fluctuations) is always decreasing in 𝛼.

4.2 HANK Model with Heterogeneous Information Structures

Beyond the univariate static beauty contestmodel, the analysis can be extended to network gameswith
incomplete information. Particularly, we focus on a HANK type model with incomplete information
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(Angeletos and Huo, 2021; Auclert, Rognlie, and Straub, 2020) and explore how heterogeneities in
MPC, income exposure, and informational friction interact with each other.

Following Angeletos and Huo (2021), we consider a perpetual-youth, overlapping-generations
version of the HANK model. The perceived different mortality risks map to different MPCs.²⁰ Sup-
pose that there are two groups of consumers indexed by 𝑔 ∈ {1, 2} with mass 𝜋𝑔 , where group 1
stands for the high MPC group and group 2 stands for the low MPC group. We denote the MPC as
𝑚𝑔 and the discount factor as 1 − 𝑚𝑔 . In addition, different groups can have different exposures to
the business cycle (Patterson, 2019): the (log) income of group 𝑔 is 𝑦𝑔𝑡 = 𝜙𝑔𝑦𝑡 , where 𝜙𝑔 captures the
group specific income exposure to aggregate output.²¹.

The dynamics of the average consumption in group 𝑔 can be expressed as

𝑐𝑔,𝑡 = −(1 − 𝑚𝑔)
∞∑
𝑘=0

(1 − 𝑚𝑔)𝑘E𝑔,𝑡[𝑟𝑡+𝑘] + 𝑚𝑔𝜙𝑔

∞∑
𝑘=0

(1 − 𝑚𝑔)𝑘E𝑔,𝑡[𝑦𝑡+𝑘], (4.3)

where E𝑔,𝑡 stands for the average expectation within group 𝑔, and the aggregate output follows
𝑦𝑡 =

∑
𝑔 𝜋𝑔𝑐𝑔,𝑡 . Condition (4.3) can be viewed as a version of the Permanent Income Hypothesis.

The consumption is a function of the present discounted value of income, incorporating variations in
the real interest rate and incomplete information. Note that it is the product of the MPC and the in-
come exposure that determines the strength of the general equilibrium consideration. Also note that
condition (4.3) together with the aggregate output effectively consists of a forward-looking network
game.

Assume that the central bank directly controls the real interest rate 𝑟𝑡 which follows an AR(1)
process, and an individual consumer 𝑖 in group 𝑔 observes a noisy signal 𝑥𝑖 ,𝑔,𝑡 about 𝑟𝑡 every period

𝑟𝑡 = 𝜌𝑟𝑡−1 + 𝜂𝑡 , 𝑥𝑖,𝑔,𝑡 = 𝑟𝑡 + 𝑢𝑖,𝑔,𝑡 ,

where 𝑢𝑖 ,𝑔,𝑡 ∼ 𝒩(0, 𝜏−1
𝑔 ). Importantly, we allow different groups to face heterogeneous information

structures indexed by the signal precision 𝜏𝑔 . This is motivated by the empirical evidence that the
informational frictions faced by consumers depend on their socioeconomic status (Broer, Kohlhas,
Mitman, and Schlafmann, 2021; Rozsypal and Schlafmann, 2022). Different levels of 𝜏𝑔 in our envi-
ronment captures such dependence. Thus, as in section 2, the first-order expectation about 𝑟𝑡 of an
individual consumer 𝑖 in group 𝑔 is

E𝑖,𝑔,𝑡[𝑟𝑡] =
(
1 − 𝜆𝑔

𝜌

)
1

1 − 𝜆𝑔𝐿
𝑥𝑖,𝑔,𝑡 ,

where 𝜆𝑔 captures the persistence of the first-order belief and could depend on groups.

²⁰Following Piergallini (2007), Del Negro, Giannoni, and Patterson (2015), and Farhi and Werning (2019), the mortality
risk gives rise to higher MPCs that are in line with empirical estimates.

²¹A natural restriction is that
∑
𝑔 𝜋𝑔𝜙𝑔 = 1.
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Without informational friction, the equilibrium outcomes are proportional to the fundamental.
The magnitude of the responses depends on the MPCs and income exposures through via a Leontief
inverse matrix in the consumption network.

Lemma 4.1. In the economy without informational friction (𝜏1 = 𝜏2 = ∞), the equilibrium outcomes are[
𝑐∗1𝑡
𝑐∗2𝑡

]
=

[
𝑐∗1
𝑐∗2

]
𝑟𝑡 ,

[
𝑐∗1
𝑐∗2

]
=

(
I −

[ 𝑚1𝜙1𝜋1
1−(1−𝑚1)𝜌

𝑚1𝜙1𝜋2
1−(1−𝑚1)𝜌

𝑚2𝜙2𝜋1
1−(1−𝑚2)𝜌

𝑚2𝜙2𝜋2
1−(1−𝑚2)𝜌

])−1 [ 1−𝑚1
1−(1−𝑚1)𝜌

1−𝑚2
1−(1−𝑚2)𝜌

]
,

and the aggregate output is

𝑦∗𝑡 =
∑
𝑔

𝜋𝑔𝑐∗𝑔𝑟𝑡 .

Now turn to the economy with incomplete information. The abundance in types of heterogeneity
implies that the equilibrium outcomes will depend on higher-order expectations with rich structures.
The following proposition summarizes the eventual dynamic pattern.

Proposition 4.3. With heterogeneity in both information structure and MPCs, the aggregate output follows

𝑦𝑡 =
(
𝜔1

(
1 − 𝜗1

𝜌

)
1

1 − 𝜗1𝐿
+ 𝜔2

(
1 − 𝜗2

𝜌

)
1

1 − 𝜗2𝐿

)
𝑦∗𝑡 .

where 𝜗1 and 𝜗2 are the reciprocals of the outside roots of the determinant of T(𝐿)

T(𝐿) ≡
[ 𝑚1𝜙1𝜋1

1−(1−𝑚1)𝐿−1
𝑚1𝜙1𝜋2

1−(1−𝑚1)𝐿−1
𝑚2𝜙2𝜋1

1−(1−𝑚2)𝐿−1
𝑚2𝜙2𝜋2

1−(1−𝑚2)𝐿−1

]
−

[ (1−𝜌𝐿)(𝐿−𝜌)+𝜏1𝐿
𝜏1𝐿

0
0 (1−𝜌𝐿)(𝐿−𝜌)+𝜏2𝐿

𝜏2𝐿

]
,

and 𝜔1 and 𝜔2 are constants that depend on deep parameters.

With incomplete information, bothwithin-group and cross-grouphigher-order expectations about
real interest rates matter for the output dynamics. Proposition 4.3 reveals that relative to the bench-
mark without informational friction, the aggregate outcome is now subject to a modification that
depends on two AR(1) terms. These two persistence parameters (𝜗1 , 𝜗2) capture the additional dy-
namics relative to the fundamental process of 𝑟𝑡 . To determine (𝜗1 , 𝜗2), it requires information from
T(𝐿): the GE consideration captured by the MPCs and income exposures interact with informational
frictions captured by precision (𝜏1 , 𝜏2) when shaping the equilibrium dynamics. This result echos
with our general characterization in section 3.4.

To gain further intuition on this interaction, we consider two special cases. In the first special
case, we keep informational friction but assume away the heterogeneity in the friction, which helps
highlight the role of heterogeneity in MPCs and income exposures.
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Proposition 4.4. With common information structure 𝜏1 = 𝜏2 = 𝜏, the aggregate output follows

𝑦𝑡 =
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝑦∗𝑡 ,

where 𝜗 is the reciprocal of the outside root of

𝑇(𝐿) =
∑
𝑔

𝜋𝑔
𝑚𝑔𝜙𝑔

1 − (1 − 𝑚𝑔)𝐿−1 − (1 − 𝜌𝐿)(𝐿 − 𝜌) + 𝜏𝐿
𝜏𝐿

.

1. When 𝑚1 = 𝑚2, 𝜗 is independent of heterogeneous income exposures.

2. When 𝑚1 > 𝑚2, 𝜗 is increasing in the high MPC group’s income exposure to aggregate output, 𝜙1.

With common information structure, the effects of incomplete information can be represented by
a single composite parameter 𝜗, which is the case explored in Angeletos and Huo (2021). When con-
sumers are with the same MPC, heterogeneity in income exposures to aggregate output is irrelevant:
what matters is only the average common MPC.²² When 𝑚1 > 𝑚2, increasing income exposure of the
high MPC group to aggregate output amplifies the average dependence on aggregate output, which
strengthens the general equilibrium consideration. Thismakes room for the higher-order expectations
to play a more important role in shaping the outcome.

In the second special case, we maximize 𝜙1 by setting the low MPC group’s income exposure to
aggregate output to zero (𝜙2 = 0), while allowing heterogeneous information structures. This special
case helps isolate the effects of heterogeneous information structure.

Proposition 4.5. With 𝜙2 = 0 and heterogeneous information structure, the group specific consumption follows

𝑐1𝑡 − 𝑐∗1𝑡 = −𝑐∗1
𝜗
𝜌

1
1 − 𝜗𝐿

𝜂𝑡 − 𝑚1𝜙1𝜋2
1 − 𝜗

𝜆2

𝑇(𝜆−1
2 )(1 − (1 − 𝑚1)𝜆2)

1
1 − 𝜗𝐿

𝑐∗2
𝜆2
𝜌

1
1 − 𝜆2𝐿

𝜂𝑡 (4.4)

𝑐2𝑡 − 𝑐∗2𝑡 = −𝑐∗2
𝜆2
𝜌

1
1 − 𝜆2𝐿

𝜂𝑡 , (4.5)

where 𝜗 is the reciprocal of the outside root of

𝑇(𝐿) ≡ 𝑚1𝜙1𝜋1

1 − (1 − 𝑚1)𝐿−1 − (1 − 𝜌𝐿)(𝐿 − 𝜌) + 𝜏1𝐿
𝜏1𝐿

.

To better understand this result, note that for the lowMPCgroup, their consumption only depends
on the first-order expectation about 𝑟𝑡 . It follows that the deviation from the benchmark case only de-
pends on the degree of informational friction (𝜆2), and the GE consideration is irrelevant for group
2. In contrast, consumers in group 1 care about aggregate income. The within-group GE consider-
ation is captured by the first term on the right-hand side of condition (4.4), and the cross-group GE

²²Note that the economy is subject to the feasibility constraint
∑
𝑔 𝜋𝑔𝜙𝑔 = 1.
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Figure 1: Responses of Output with Incomplete Information
Note: The persistence of the interest rate is set to be 0.9 and the two groups are with equal measure. In the RANK model
(black broken line), 𝑚1 = 𝑚2 = 0.3 and the common precision is 𝜏 = 0.4. In the HANK model with common information
structure (red dashed line), 𝑚1 = 0.45 > 𝑚2 = 0.15, 𝜙1 = 1.75 > 𝜙2 = 0.25, and 𝜏1 = 𝜏2 = 0.4. In the HANK model with
heterogeneous information structure (blue solid line), 𝜏1 = 0.2 < 𝜏2 = 0.6 and the rest of the parameters are the same as
that in the second case.

consideration is captured by the second term. Such additional GE considerations amplify the effects
of information incompleteness. Therefore, when the high MPC group is subject to more informa-
tional friction than the lowMPC group, it will have a larger quantitative bite on the aggregate output.
These analytical results complement recent studies that explore the interaction between information
heterogeneity and income heterogeneity in HANKmodels (Pfäuti and Seyrich, 2022; Guerreiro, 2022;
Gallegos, 2023).

Finally, Figure 1 displays the impulse responses of output in three cases: (1) with common MPC
and common information structure (black broken line), (2) with heterogeneous MPCs and common
information structure (red dashed line), and (3) with heterogeneous MPCs and heterogeneous infor-
mation structure (blue solid line). The responses are normalized by their counterparts without infor-
mational friction, which allows us to focus on the effects of incomplete information. Comparing case
(1) and (2), with the same first-order expectation, heterogeneousMPCs and income exposures further
dampens the impact response and induces additional sluggishness. Keeping the average first-order
expectation the same as before, when the informational frictions is more severe for the high MPC
group (𝜏1 < 𝜏2), the effects of informational frictions on aggregate output are further amplified.

4.3 Reconciling with Empirical Evidence on Expectations

In this section, we show how our solution can be used to reconcile with empirical evidence on ex-
pectations, and how it differs from an alternative method in solving models with heterogeneous be-
liefs. To proceed, we adopt the model environment in Angeletos and La’O (2013) with decentral-
ized trading and random matching. When shocks are persistent, Angeletos and La’O (2013) adopts
a heterogeneous-prior approach to overcome the infinite regress problem. We instead maintain the
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rationality assumption.
In the economy, an individual agent 𝑖 is endowed with a permanent fundamental 𝜅𝑖 , drawn from

a normal distribution𝒩(0, 𝜎2
𝜅). At the beginning of each period, an agent 𝑖 is randomly matched with

another agent indexed by 𝑚(𝑖, 𝑡). Agent 𝑖’s optimal response is given by

𝑎𝑖𝑡 = 𝜅𝑖 + 𝛼E𝑖𝑡[𝑎𝑚(𝑖,𝑡)], (4.6)

where 𝛼 captures the trade dependence between the two matched agents, and 𝑎𝑚(𝑖,𝑡) is the action of
agent 𝑖’s match in period 𝑡.²³

Besides knowing her own fundamental, agent 𝑖 receives two signals every period about her trading
partner

𝑥1
𝑖𝑡 = 𝜅𝑚(𝑖,𝑡) + 𝜀𝑖𝑡 , (4.7)

𝑥2
𝑖𝑡 = 𝑥1

𝑚(𝑖 ,𝑡),𝑡 + 𝜉𝑡 + 𝑢𝑖𝑡 , (4.8)

where 𝜀𝑖𝑡 ∼ 𝒩(0, 𝜎2
𝜀) and 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜎2

𝑢) are both idiosyncratic noises, and 𝜉𝑡 is a common noise.
The fundamental of 𝑖’s match in period 𝑡 is 𝜅𝑚(𝑖 ,𝑡), which from 𝑖’s perspective is also an i.i.d shock
that follows 𝒩(0, 𝜎2

𝜅). As emphasized by Angeletos and La’O (2013), agent 𝑖’s forecast about 𝜅𝑚(𝑖,𝑡)
is pinned downed by 𝑖’s first signal alone, and not affected by the second signal. However, agent 𝑖’s
forecast of 𝑥1

𝑚(𝑖,𝑡)𝑡 and all the higher-order expectations are affected by the common noise 𝜉𝑡 . The
systematic variations in higher-order expectations induced by 𝜉𝑡 generates fluctuations in aggregate
outcomes. We assume that 𝜉𝑡 follows a persistent process

𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 . (4.9)

Different from subsection 4.1, agent 𝑖 has to form higher-order expectations about a randomplayer
𝑚(𝑖 , 𝑡) every period. Nevertheless, our method continues to work which yields the following equilib-
rium characterization.

Proposition 4.6. The aggregate outcome 𝑎𝑡 is given by

𝑎𝑡 =
𝜑

1 − 𝜗𝐿
𝜂𝑡 (4.10)

where

𝜗 =
1
2

 1
𝜌
+ 𝜌 + (1 − 𝛼)

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
−

√(
1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
)2

− 4
 , (4.11)

𝜑 =
𝛼2𝜗
𝜌

𝜎2
𝜀

𝜎2
𝜀 + 𝜎2

𝑢

(
1 − 𝛼2 + 𝜎2

𝜀

𝜎2
𝜅

(
1 − 𝛼2𝜗

𝜌

𝜎2
𝜀

𝜎2
𝜀 + 𝜎2

𝑢

))−1

. (4.12)

²³See Angeletos and La’O (2013) for the details of the micro foundation.
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Similar to Angeletos and La’O (2013), the common noise 𝜉𝑡 leads to aggregate fluctuations, even
though first-order expectations about the aggregate fundamental remain constant. In addition, when
the common noise is persistent, the aggregate outcome inherits this property. Importantly, the per-
sistence of former is necessarily greater than the latter which is determined in condition (4.11). This
result also helps illustrate the working of Corollary 3.1: since 𝜉𝑡 is not a fundamental in the best re-
sponse, its persistence 𝜌 will not enter the law of motion of the aggregate outcome.

Comparing with heterogeneous prior. A convenient device to avoid the infinite regress problem
is to assume that agents have heterogeneous prior, as in Angeletos and La’O (2013) and Angeletos,
Collard, and Dellas (2018). The heterogeneous prior assumption works as follows. Agent 𝑖 observes
both 𝜉𝑡 and 𝑎𝑚(𝑖,𝑡)𝑡 perfectly. However, agent 𝑖 believes her match 𝑚(𝑖, 𝑡) observes 𝑎𝑖 with a bias 𝜉𝑡 .
Supposing that agent 𝑖’s policy rule is

𝑎𝑖𝑡 = 𝑓1𝑎𝑖 + 𝑓2𝑎𝑚(𝑖,𝑡) + 𝑓3𝜉𝑡 ,

then agent 𝑖 believes that the action of her match is given by

E𝑖𝑡[𝑎𝑚(𝑖 ,𝑡)] = 𝑓1𝑎𝑚(𝑖,𝑡) + 𝑓2(𝑎𝑖 + 𝜉𝑡) + 𝑓3𝜉𝑡 .

By the method of undermined coefficients, it is straightforward to pin down the constants { 𝑓1 , 𝑓2 , 𝑓3}
that satisfies the best response, which yields the following aggregate outcome with heterogeneous
prior

𝑎𝑡 =
𝛼2

(1 − 𝛼2)(1 − 𝛼)𝜉𝑡 . (4.13)

The comparison between (4.10) and (4.13) echoes with our emphasis on the interaction between the
GE consideration and informational friction. With heterogeneous priors, the aggregate outcome is
perfectly correlated with 𝜉𝑡 . This is in contrast with the result under rational expectations in which
a different persistence by 𝜗 is endogenously determined. Meanwhile, the GE consideration 𝛼 only
modifies the impact response under heterogeneous priors, but it shapes the entire dynamics under
rational expectations. The alternative approach with heterogeneous prior is convenient in obtaining
the allocation, but at the cost of eliminating learning and higher-order expectations. Our approach
helps reserve the role of dynamic higher-order expectations in shaping the aggregate outcome, with-
out sacrificing the tractability.

Empirical evidence on expectations. The tractability also makes possible a clear mapping to the
evidence on expectations. Consider the following regressions

𝑎𝑡+𝑘 − E𝑡[𝑎𝑡+𝑘] = 𝐾CG(E𝑡[𝑎𝑡+𝑘] − E𝑡−1[𝑎𝑡+𝑘]) + 𝑣𝑡+𝑘 ,
𝑎𝑡+𝑘 − E𝑖𝑡[𝑎𝑡+𝑘] = 𝐾BGMS(E𝑖𝑡[𝑎𝑡+𝑘] − E𝑖 ,𝑡−1[𝑎𝑡+𝑘]) + 𝑣𝑖 ,𝑡+𝑘 .

29



The first regression proposed by Coibion and Gorodnichenko (2015) estimates the predictability of
forecast errors using forecast revisions at the aggregate level, which detects deviations from rational
expectations with common information if 𝐾CG ≠ 0. The second regression, proposed by Bordalo,
Gennaioli, Ma, and Shleifer (2020), is at the individual level, and detects deviations from rationality
if 𝐾BGMS ≠ 0.

Through the lens of our model, these two moments for one-period ahead forecast (𝑘 = 1) have the
following properties.

Proposition 4.7. 1. With rational expectations, the coefficients 𝐾CG and 𝐾BGMS satisfy

𝐾CG > 𝐾BGMS = 0,

Furthermore, 𝐾CG is decreasing in 𝛼.

2. With heterogeneous prior, the coefficients 𝐾CG and 𝐾BGMS are given by

𝐾CG = 𝐾BGMS = 𝛼 − 1 < 0

Bordalo, Gennaioli, Ma, and Shleifer (2020) documents that 𝐾CG > 0 and 𝐾CG > 𝐾BGMS.²⁴ This
pattern is consistent with the model under rational expectations. With rational expectations, 𝐾BGMS =

0 by construction. With dispersed information, an agent’s forecast revision helps predict others’ but
not their own forecast error, which allows 𝐾CG differs from zero. Furthermore, 𝐾CG depends on the 𝛼.
This suggests that in aGE settingwhere the outcome depends on the forecasts, one has to condition on
the level of the GE consideration when mapping 𝐾CG to the magnitude of the informational friction.

In contrast, with heterogeneous prior, all common shocks are publicly known. This implies that
the moment at the individual level is always the same as that at the aggregate level. In addition, with
the “naive” beliefs, agents always overreact to the news, implying a negative regression coefficient.
The different implications on the properties of forecasts brings in additional caveatswhen substituting
the rational-expectations framework with alternative approaches.

4.4 Integrating Belief Distortions with Dispersed Information

Recent work on expectations formation has also examined the assumption of individual rationality
and provides evidence on significant deviation from this benchmark (Bordalo, Gennaioli, Ma, and
Shleifer, 2020; Broer and Kohlhas, 2019). Different types of belief distortions have been proposed to
account for the observed empirical patterns, including over/under confidence, over/under extrapola-
tion, diagnostic expectations, and so on. Most of these studies focus on a partial equilibrium analysis,
in the sense that the process of the variable to be forecast is taken to be exogenously given. This ap-
proach is effective in understanding how a certain type of belief distortion changes the properties

²⁴Across different macroeconomic variables, about half of the 𝐾BGMS coefficients are negative in Table 3 of Bordalo, Gen-
naioli, Ma, and Shleifer (2020) .
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of individual or consensus forecasts, but it is not sufficient to evaluate its impact on the equilibrium
outcomes. In this section, we show that our method can also be applied to models with bounded
rationality, and help understand how forecasts with distorted beliefs and the endogenous outcomes
are jointly determined in equilibrium.

To illustrate, we adopt the notion of diagnostic expectation formulation from BGMS.With rational
expectations, the updating rule for the underlying state z𝑖𝑡 in state space (3.7) is given by

E𝑖𝑡[z𝑖𝑡] = E𝑖 ,𝑡−1[z𝑖𝑡] + K (x𝑖𝑡 − HE𝑖 ,𝑡−1[z𝑖𝑡]) ,

where K is the corresponding steady-state Kalman gain matrix. With diagnostic expectation, addi-
tional weight is put on the news, and the distorted belief denoted by Ẽ[·] is given by

Ẽ𝑖𝑡[z𝑖𝑡] = E𝑖,𝑡−1[z𝑖𝑡] + (1 + 𝜇)K (x𝑖𝑡 − HE𝑖 ,𝑡−1[z𝑖𝑡]) ,

where 𝜇 ≥ 0 parameterizes the overreaction to the news. When 𝜇 = 0, diagnostic expectations reduce
to rational expectations.

Now consider the following beauty-contest model with diagnostic expectations

𝑎𝑖𝑡 = (1 − 𝛼)Ẽ𝑖𝑡[𝜉𝑡] + 𝛼Ẽ𝑖𝑡[𝑎𝑡].

Following BGMS, we assume that the fundamental 𝜉𝑡 follows an AR(1) process, and agents only ob-
serve a private signal 𝑥𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 every period where 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜎2). Under this information struc-
ture, the diagnostic expectation about 𝜉𝑡 is exactly the same as that in Proposition 1 of BGMS

Ẽ𝑖𝑡[𝜉𝑡] = E𝑖 ,𝑡−1[𝜉𝑡] + (1 + 𝜇)
(
1 − 𝜆

𝜌

)
(𝑥𝑖𝑡 − E𝑖,𝑡−1[𝜉𝑡]),

where 𝜆 is specified in equation (2.6). The new element here is the fixed point problem: the aggregate
outcome 𝑎𝑡 is endogenously determined by agents’ diagnostic expectations, and agents have to form
diagnostic expectations about this endogenous variable. The following proposition characterizes the
fixed point in the equilibrium.

Proposition 4.8. The aggregate outcome with diagnostic expectations is

𝑎𝑡 =
𝜆(1 + 𝜇)

𝜆(1 + 𝜇) − 𝜇𝜗

(
1 − 𝜇

1 + 𝜇

𝜌𝜗

𝜆
𝐿
)
𝑎∗𝑡 , (4.14)

where 𝑎∗𝑡 is the outcome with rational expectations, and 𝜗 is a function of deep parameters

𝑎∗𝑡 =
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝜉𝑡 , and 𝜗 =

1
2


(

1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌𝜎2

)
−

√(
1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌𝜎2

)2

− 4
 .
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Condition (4.14) gives the diagnostic-expectation dynamics as a transformation of the rational-
expectation counterpart. This transformation consists of two parts: first, there is an additional re-
sponse on impact captured by the constant term 𝜆(1+𝜇)

𝜆(1+𝜇)−𝜇𝜗 , which is due to the overreaction to the
news. Note that the exact amount of overreaction also depends on the GE effects summarized in 𝜗.
Ceteris paribus, a stronger complementarity leads to a higher 𝜗, and amore pronounced overreaction
relative to its rational-expectation benchmark. Second, the diagnostic expectations also modify how
to respond to past signals, which translates to modification of the entire dynamics, captured by the
term 1 − 𝜇

1+𝜇
𝜌𝜗
𝜆 𝐿. In this case, informational friction, GE feedback effect, and distorted belief jointly

determine the outcome, and condition (4.14) neatly presents the role of each force.
The idea of combining incomplete information with certain kinds of distorted beliefs in a general

equilibrium setting goes beyond the example presented above. For example, Angeletos, Huo, and
Sastry (2021) combines over-extrapolation and over-/under-confidence with dispersed information
to account for the identified delayed overshooting of consensus forecast in response to business-cycle
shocks. We expect our method helps to facilitate more interaction between bounded rationality and
incomplete information.

5. ENDOGENOUS INFORMATION

So far, we have maintained the assumption that the signal process is exogenously determined and in-
dependent of agents’ actions. In this section we consider the case where signals contain variables that
are endogenously determined in equilibrium. We first discuss how the models with endogenous in-
formation are related to those with exogenous information. We then discuss specific examples where
the finite-state representation no longer exists. Finally, we propose a numerical algorithm to compute
models with endogenous information.

In contrast with the previous setup, we modify the signal structure in the following way

x𝑖𝑡 = M(𝐿)s𝑖𝑡 + P(𝐿)a𝑡 . (5.1)

The new element P(𝐿)a𝑡 allows the signal to depend on the aggregate outcomes, and therefore the
informativeness of the signal is endogenously determined in equilibrium. For example, agents could
learn the aggregate state by observing past prices, outputs, and so on, which are also outcomes of
agents’ decisions. We define the equilibrium as follows.

Definition 2. A linear Bayesian-Nash equilibrium with endogenous information is a policy ruleh (𝐿) for agents
and a law of motion 𝓗 (𝐿) for the aggregate outcome, such that

1. The individual actiona𝑖𝑡 = h(𝐿)x𝑖𝑡 satisfies the best response (3.1), taking the following exogenous signal
process as given

x𝑖𝑡 = M(𝐿)s𝑖𝑡 + P(𝐿)𝓗 (𝐿)𝚲s𝑖𝑡 . (5.2)
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The aggregate outcome is consistent with individual actions: a𝑡 =
∫
a𝑖𝑡 .

2. The aggregate outcome is consistent with the law of motion of the signal

a𝑡 = h(𝐿)M(𝐿)𝚲s𝑖𝑡 = 𝓗 (𝐿)𝚲s𝑖𝑡 .

Note that there are two distinct consistency requirements: the perceived law of motion 𝓗 (𝐿) has
to be the same as that enters the best response and the signal process. Accordingly, we purposely sep-
arate the equilibrium definition into two parts: in part (1), given a particular perceived law of motion
𝓗 (𝐿), agents solve for their optimal policyh(𝐿) in the sameway as in an exogenous-information econ-
omy, and the results from Section 3 can be applied. In part (2), the additional consistency requirement
on the signal process is unique to the endogenous-information equilibrium.

This definition also makes it clear that the endogenous-information equilibrium is a particular ex-
ogenous information equilibrium. From individual agents’ perspectives, the competitive nature of
the equilibrium implies that the information process is always exogenous to them. However, this
argument does not mean that the distinction between exogenous and endogenous information is ir-
relevant, as only in the latter case the informativeness of signals varies with changes in policies, tech-
nologies, and market structures.

5.1 Infinite-State Representation

Notably, with endogenous information, the equilibrium may not admit a finite-state representation.
In this subsection, we provide such an example which is a natural extension of the models with ex-
ogenous information.

Example. Suppose the best response is the same as that in Section 2

𝑎𝑖𝑡 = (1 − 𝛼)E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑎𝑡],

where 𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 . Different from previous cases, agents receive an exogenous signal and an
endogenous signal with i.i.d private noises every period

𝑥1
𝑖𝑡 = 𝜂𝑡 + 𝑢𝑖𝑡 , and 𝑥2

𝑖𝑡 = 𝑎𝑡 + 𝜀𝑖𝑡 .

The inclusion of the aggregate outcome 𝑎𝑡 makes the second signal endogenous. There are three
shocks and two signals, and the signal system is non-square.

Despite the seemingly insignificant deviation from previous examples by including the aggregate
outcome in the signal process, the equilibrium can become much more complex to characterize, as
shown in the following proposition.
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Proposition 5.1. Assume 𝛼 ∈ (−1, 1) and all the shocks are with positive variances. Then, in the above
example, the aggregate outcome in equilibrium never admits a finite-state representation.

The basic idea behind the infinite-state result can be understood via Corollary 3.1. With endoge-
nous information, the equilibrium process 𝑎𝑡 = ℋ(𝐿)𝜂𝑡 itself enters the signal process M(𝐿). At the
same time, the coefficients of ℋ(𝐿) need to be consistent with the determinant of the corresponding
T(𝐿) in equation (3.14)—a function of M(𝐿). However, such consistence in the fixed-point problem
cannot be achieved with a finite-state representation. As long as the guess of the equilibrium is re-
stricted to be within the realm of finite ARMAprocesses, Proposition 5.1 formally establishes that any
such conjecture with a finite-state process cannot be supported as an equilibrium.²⁵

It is important to note that the infinite-state result is not due to higher-order expectations per se.
If the perceived law of motion for 𝑎𝑡 follows a finite-order process, Theorem 1 implies the actual law
of motion also follows a finite-order process, despite the dependence on higher-order expectations.
With endogenous information, the additional complication lies in that the signal process itself cannot
be represented as a finite-order process.

Proposition 5.1 also implies that such infinite-state result does not hinge on explicit coordination
motive. Even when 𝛼 = 0, agents still need to forecast the action of others as it appears in their signal.
The endogenous signal therefore introduces an implicit form of coordination, which leads to the type
of fixed-point problem in Definition 2.

In the literature, a forward-looking asset pricing example is provided by Makarov and Rytchkov
(2012). Their proof is based on the orthogonality condition of projection obtained from the inverse 𝑧-
transform, which leads to the necessary conditions to admit Markovian dynamics. We adopt a differ-
ent proof strategy, which relies on the properties of the fundamental representation, theWiener-Hopf
prediction formula, and the annihilation operator. These properties can be used to study more com-
plex problems. For example, in Appendix A.20, we have shown that the infinite-state result extends
to the case in which the fundamental follows an arbitrary AR (𝑝) process.²⁶

5.2 Finite-State Approximation

In this subsection, we provide an algorithm that approximates the aggregate outcomewith a relatively
low-order ARMA process. The algorithm is based on the equilibrium Definition 2. The key idea is to
utilize our results in Section 3 to solve the exogenous-information equilibrium, which helps save the
required state variables.

²⁵With this conjecture, one may think that keep track of {𝑥1
𝑖𝑡 = 𝜂𝑡 + 𝑢𝑖𝑡 , 𝑥2

𝑖𝑡 − 𝜌𝑥2
𝑖 ,𝑡−1 = 𝛿𝜂𝑡 + 𝜀𝑖𝑡 − 𝜌𝜀𝑖,𝑡−1} every period is

sufficient to make the inference about 𝜂𝑡 as 𝜂𝑡 , 𝜀𝑖𝑡 , 𝜀𝑖 ,𝑡−1 are i.i.d shocks. This argument fails to recognize that the forecast
can be improved by using additional signals from the past. For example, since 𝑥1

𝑖 ,𝑡−1 is helpful in inferring 𝜂𝑡−1, it is also
helpful in inferring 𝜉𝑡−1 and 𝜀𝑖,𝑡−1. As a result, 𝑥1

𝑖,𝑡−1 should be used in forecasting 𝜂𝑡 . By the same logic, all past signals
are relevant.

²⁶We are grateful to Kyle Jurado for pointing out a gap in an early version of the proof.
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To illustrate the strategy, consider on the following framework

𝑎𝑖𝑡 = E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑎𝑡] + 𝛾E𝑖𝑡[𝑎𝑡+1] + 𝛽E𝑖𝑡[𝑎𝑖 ,𝑡+1], (5.3)

where 𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 , and the signal process is given by

𝑥1
𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 , and 𝑥2

𝑖𝑡 = 𝑎𝑡 + 𝜀𝑖𝑡 .

The best response (5.3) allows for both static and forward-looking complementarity. This structure
nests a number of commonly usedmodels in the literature, and the algorithm can be applied for more
general best responses as well.²⁷

Numerical Algorithm. When information is endogenous, the finite-state representation no longer
holds in general. We proceed with an iterative algorithm that maps from the perceived signal process
to the actual law of motion.

Starting with a perceived process 𝑎𝑡 = ℋ (0)(𝐿)𝜉𝑡 that admits an ARMA representation, we com-
pute a particular exogenous-information equilibrium where the exogenous signals are given by

𝑥1
𝑖𝑡 = 𝜉𝑡 + 𝑢𝑖𝑡 , and 𝑥2

𝑖𝑡 = ℋ (0)(𝐿)𝜉𝑡 + 𝜀𝑖𝑡 .

Denote the law of motion in the exogenous-information equilibrium as 𝑎𝑡 = ℋ (1)(𝐿)𝜉𝑡 , which can
be obtained from our earlier results in Section 3. Importantly, for individual agents, their perceived
aggregate outcome that enters the best response is ℋ (1)(𝐿)𝜉𝑡 , rather than ℋ (0)(𝐿)𝜉𝑡 that enters the
signal process.²⁸

Though by construction, the perceived actual law of motionℋ (1)(𝐿)𝜉𝑡 is consistent with the actual
law of motion, it may not satisfy part (2) in Definition 2. One can therefore set the next perceived law
of motion for the signal process to be ℋ (1)(𝐿), and iterate this process until | |ℋ (𝑘+1)(𝐿) − ℋ (𝑘)(𝐿)| | is
small enough.

We illustrate two advantages of this numerical algorithm: fast convergence speed and efficiency in
saving state variables. As a comparison, consider the following alternative iteration algorithmwithout
solving an exogenous-information equilibrium in each iteration:

𝑎𝑡 = E𝑡[𝜉𝑡] + 𝛼E𝑡
[
ℋ (0)(𝐿)𝜉𝑡

]
+ 𝛾E𝑡

[
ℋ (0)(𝐿)𝜉𝑡+1

]
+ 𝛽E𝑖𝑡[𝑎𝑖,𝑡+1]. (5.4)

Different from our original mapping, ℋ (0)(𝐿) enters both the signal process and the best response.

²⁷For example, by setting 𝛾 = 𝛽 = 0, it nests the static beauty contests in Morris and Shin (2002), Woodford (2003),
Maćkowiak and Wiederholt (2009) and Angeletos and La’O (2010); by allowing 𝛽 > 0 and 𝛾 > 0, it nests the forward-
looking beauty contests in Allen, Morris, and Shin (2006), Nimark (2008), Nimark (2017), and Angeletos and Huo (2021).
The method also works for environments with backward-looking best responses.

²⁸This distinction is irrelvant in the true equilibriumwhereℋ (0)(𝐿) = ℋ (1)(𝐿). In the iterative algorithm, such distinction
helps speed up the convergence.
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Figure 2: Numerical Properties in the Endogenous Information Example
Parameters: 𝜌 = 0.95, 𝛼 = 0.5, 𝛾 = 0.2, 𝛽 = 0.1, 𝜎𝜂 = 1, 𝜎𝑢 = 𝜎𝜀 = 2.

Consequently, there is no need to solve for the exogenous-information equilibrium, and the actual
law of motion 𝑎𝑡 = ℋ (1)(𝐿)𝜂𝑡 is different from agents’ perception. The left panel of Figure 2 displays
the convergence paths of the impulse response functions when solving the exogenous-information
equilibrium in the iteration. Starting with the perfect information solution, the law of motion con-
verges after a small number of iterations. From the second iteration, the IRF of aggregate outcomes
can hardly be distinguished from its further iterations. The right panel of Figure 2 compares the
required number of state variables with the aforementioned alternative algorithm. The number of re-
quired minimal state variables increases linearly in our approach, but increases exponentially in this
alternative method.

This numerical algorithm complements the literature on computingmodels with endogenous dis-
persed information. To deal with the issue of potential infinite history, a common strategy is to trun-
cate the history as in Hellwig (2002), Lorenzoni (2009), and Venkateswaran (2014). Nimark (2017) in-
stead approximates the equilibrium outcomewith a finite-order expectations of the fundamental, and
this method has an interesting bounded rationality interpretation. Both of these methods are flexible
and straightforward to implement, but typically require a relatively large state space to for an accu-
rate approximation. Recently, Han, Tan, andWu (2019) build on the bridge between Kalman filter and
Wiener filter proposed in Section 3 to obtain the fundamental representation, and they implement the
inference with the discrete Fourier transform which helps speed up the annihilating operator. These
different methods have their own comparative advantage, and researchers could adopt the best suited
one for their particular application.
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6. CONCLUSION

Wedevelop amethod that helps to solve and characterize the equilibriumoutcomeswhen information
is incomplete and agents coordinate with each other. The key step is to combine the Kalman filter and
Wiener filter to make the inference problem traceable. We show that the equilibrium outcome always
admits a finite-state representation when signals follow finite ARMA processes, and we characterize
how the endogenous persistence depends on the interaction between information incompleteness
and general equilibrium consideration. We also illustrate how to use the method to compute the
equilibrium with endogenous information.

We demonstrate that our method can help derive applied lessons in a sequence of applications.
Particularly, it is flexible enough to accommodate deviations from strong rationality, such as diag-
nostic expectations (Bordalo, Gennaioli, Ma, and Shleifer, 2020), over-/under-confidence (Broer and
Kohlhas, 2019), and over-/under-extrapolation (Greenwood and Shleifer, 2014). These belief distor-
tions have been shown to be necessary to rationalize the evidence on expectations. Themethod allows
one to explore their general equilibrium implications under incomplete information.

Another direction of future research includes the exploration of how the structure of dynamic co-
ordination affects the equilibrium outcome. The applications in this paper have focused on static and
Euler-type forward-looking complementarities, but the method allows one to consider much more
sophisticated dependence on past and future aggregate outcomes estimated from micro data. Our
results can then assist in building the bridge from micro to macro.
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Online Appendix

A. PROOF OF THEOREMS AND PROPOSITIONS

A.1 Proof of Lemma 3.1

Proof. The proof follows directly from Chapter 13.1 in Hamilton (1994). □

A.2 Proof of Wiener-Hopf Prediction Formula

Proof. A formal proof can be found in Whittle (1963). □

A.3 Formula for Annihilation Operator

To handle the annihilation operator, we prove the following lemma.

Lemma A.1. Suppose 𝑔(𝐿) does not contain negative powers of 𝐿 in expansion and |𝜉𝑘 | < 1.[
𝑔(𝐿)∏ℓ

𝑘=1(𝐿 − 𝜉𝑘)𝑎𝑘

]
+

=
𝑔(𝐿)∏ℓ

𝑘=1(𝐿 − 𝜉𝑘)𝑎𝑘
−

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝑧 − 𝜉𝑘)𝑎𝑘−𝜏

[
𝑔(𝐿)∏

ℎ≠𝑘(𝐿 − 𝜉ℎ)𝑎ℎ
] (𝜏)
𝐿=𝜉𝑘

. (A.1)

Proof. We are able to write

𝑔(𝑧)∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘

= 𝑔̃(𝑧) + 𝑓 (𝑧)∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘 ∏𝜈

𝑖=0(1 − 𝜁𝑖𝑧)𝑏𝑖

where 𝑔̃(𝑧) and 𝑓 (𝑧) are polynomial, 𝜁𝑖 are distinct and |𝜁𝑖 | < 1, and we can choose the order of 𝑓 (𝑧) to be strictly less than
the order of

∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘 ∏𝜈

𝑖=0(1 − 𝜁𝑖𝑧)𝑏𝑖 . It follows that the partial fraction decomposition of the RHS can be written as

𝑔̃(𝑧) + 𝑓 (𝑧)∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘 ∏𝜈

𝑖=0(1 − 𝜁𝑖𝑧)𝑏𝑖
= 𝑔̃(𝑧) +

ℓ∑
𝑘=1

𝑎𝑘∑
𝜏=1

𝑐𝑘,𝜏
(𝑧 − 𝜉𝑘)𝜏 +

𝜈∑
𝑖=1

𝑏𝑖∑
𝜏=1

𝑑𝑖 ,𝜏
(1 − 𝜁𝑖𝑧)𝜏 (A.2)

where 𝑐𝑘,𝜏 and 𝑑𝑖,𝜏 are unknown real constants to be determined. Then,[
𝑔(𝑧)∏ℓ

𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘

]
+

=

[
𝑔̃(𝑧) +

ℓ∑
𝑘=1

𝑎𝑘∑
𝜏=1

𝑐𝑘,𝜏
(𝑧 − 𝜉𝑘)𝜏 +

𝜈∑
𝑖=1

𝑏𝑖∑
𝜏=1

𝑑𝑖 ,𝜏
(1 − 𝜁𝑖𝑧)𝜏

]
+
=

𝑔(𝑧)∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘

−
ℓ∑
𝑘=1

𝑎𝑘∑
𝜏=1

𝑐𝑘,𝜏
(𝑧 − 𝜉𝑘)𝜏 .

Thus, what we ultimately need to obtain is 𝑐ℎ,𝜏 where ℎ ∈ {1, ..., ℓ } and 𝜏 ∈ {1, ..., 𝑎ℎ}. Let us multiply (𝑧 − 𝜉ℎ)𝑎ℎ both sides
of (A.2):

(𝑧 − 𝜉ℎ)𝑎ℎ 𝑔̃(𝑧) + (𝑧 − 𝜉ℎ)𝑎ℎ 𝑓 (𝑧)∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘 ∏𝜈

𝑖=0(1 − 𝜁𝑖𝑧)𝑏𝑖
= (𝑧 − 𝜉ℎ)𝑎ℎ 𝑔̃(𝑧) +

ℓ∑
𝑘=1

𝑎𝑘∑
𝜏=1

(𝑧 − 𝜉ℎ)𝑎ℎ 𝑐𝑘,𝜏
(𝑧 − 𝜉𝑘)𝜏 +

𝜈∑
𝑖=1

𝑏𝑖∑
𝜏=1

(𝑧 − 𝜉ℎ)𝑎ℎ 𝑑𝑖 ,𝜏
(1 − 𝜁𝑖𝑧)𝜏 ,
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and define

𝑓ℎ(𝑧) ≡ (𝑧 − 𝜉ℎ)𝑎ℎ 𝑔̃(𝑧) + (𝑧 − 𝜉ℎ)𝑎ℎ 𝑓 (𝑧)∏ℓ
𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘 ∏𝜈

𝑖=0(1 − 𝜁𝑖𝑧)𝑏𝑖
=

𝑔(𝑧)∏
𝑘≠ℎ(𝑧 − 𝜉𝑘)𝑎𝑘 .

Now, we invoke the Heaviside expansion theorem and by 𝑖-times (𝑖 ∈ {0, 1, ..., 𝑎ℎ − 1}) differentiating both side with respect
to 𝑧 and evaluating at 𝑧 = 𝜉ℎ , the LHS and RHS of (A.3) are

(LHS) =
𝑑𝑖

𝑑𝑧 𝑖

(
(𝑧 − 𝜉ℎ)𝑎ℎ 𝑔̃(𝑧) + (𝑧 − 𝜉ℎ)𝑎ℎ 𝑓 (𝑧)∏ℓ

𝑘=1(𝑧 − 𝜉𝑘)𝑎𝑘 ∏𝜈
𝑖=0(1 − 𝜁𝑖𝑧)𝑏𝑖

)�����
𝑧=𝜉ℎ

= 𝑓 (𝑖)ℎ (𝜉ℎ),

(RHS) =
𝑑𝑖

𝑑𝑧 𝑖

(
(𝑧 − 𝜉ℎ)𝑎ℎ 𝑔̃(𝑧) +

ℓ∑
𝑘=1

𝑎𝑘∑
𝜏=1

(𝑧 − 𝜉ℎ)𝑎ℎ 𝑐𝑘,𝜏
(𝑧 − 𝜉𝑘)𝜏 +

𝜈∑
𝑖=1

𝑏𝑖∑
𝜏=1

(𝑧 − 𝜉ℎ)𝑎ℎ 𝑑𝑖 ,𝜏
(1 − 𝜁𝑖𝑧)𝜏

)�����
𝑧=𝜉ℎ

= 0 + 𝑑𝑖

𝑑𝑧 𝑖
((𝑧 − 𝜉ℎ)𝑎ℎ−1𝑐ℎ,1 + ... + 𝑐ℎ,𝑎ℎ

) ����
𝑧=𝜉ℎ

+ 0

=
(𝑎ℎ − 1)!(𝑧 − 𝜉ℎ)𝑎ℎ−𝑖−1𝑐ℎ,1

(𝑎ℎ − 𝑖 − 1)! + ... + (𝑖 + 1)!(𝑧 − 𝜉ℎ)𝑐ℎ,𝑎ℎ−𝑖−1

1!
+ 𝑖!𝑐ℎ,𝑎ℎ−𝑖

����
𝑧=𝜉ℎ

= 𝑖!𝑐ℎ,𝑎ℎ−𝑖 ,

respectively and thus 𝑐ℎ,𝑎ℎ is determined as 𝑐ℎ,𝑎ℎ−𝑖 =
𝑓 (𝑖)ℎ (𝜉ℎ )
𝑖! . □

A.4 Proof of Proposition 3.1

From the Fundamental Representation Theorem, we have that

B(𝐿)−1 = I − H [I − (F − FKH) 𝐿]−1 FK𝐿,

and from Lemma 3.1 it follows that

z𝑖𝑡 = (I − F𝐿)−1 𝚽s𝑡 , and, x𝑖𝑡 = Hz𝑖𝑡 +𝚿s𝑖𝑡 ,

which implies
x𝑖𝑡 = M(𝐿)s𝑖𝑡 = (H (I − F𝐿)−1 𝚽 +𝚿)s𝑖𝑡 .

Hence,

B(𝐿)−1M(𝐿) =
(
I − H [I − (F − FKH) 𝐿]−1 FK𝐿

)
(H (I − F𝐿)−1 𝚽 +𝚿)

= H
(
I − [I − (F − FKH) 𝐿]−1 FKH𝐿

)
(I − F𝐿)−1 𝚽 +

(
I − H [I − (F − FKH) 𝐿]−1 FK𝐿

)
𝚿

= H
(
I − [I − (F − FKH) 𝐿]−1 ((I − F𝐿) + FKH𝐿 − (I − F𝐿))

)
(I − F𝐿)−1 𝚽 +

(
I − H [I − (F − FKH) 𝐿]−1 FK𝐿

)
𝚿

= H
(
I − I + [I − (F − FKH) 𝐿]−1 (I − F𝐿)

)
(I − F𝐿)−1 𝚽 +

(
I − H [I − (F − FKH) 𝐿]−1 FK𝐿

)
𝚿

= H [I − (F − FKH) 𝐿]−1 𝚽 +
(
I − H [I − (F − FKH) 𝐿]−1 FK𝐿

)
𝚿

=
H Adj (I − (F − FKH) 𝐿) (𝚽 − FK𝚿𝐿) +𝚿det (I − (F − FKH) 𝐿)

det (I − (F − FKH) 𝐿)
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=
H Adj (I − (F − FKH) 𝐿) (𝚽 − FK𝚿𝐿) +𝚿

∏𝑢
𝑘=1 (1 − 𝜆𝑘𝐿)∏𝑢

𝑘=1 (1 − 𝜆𝑘𝐿) ,

where {𝜆𝑘}𝑢𝑘=1 are the non-zero eigenvalues of F − FKH. The last equality follows from the fact that

det (I − (F − FKH) 𝐿) = 𝐿𝑣 det
(
I𝐿−1 − (F − FKH)) = 𝐿𝑣𝐿−(𝑣−𝑢)

𝑢∏
𝑘=1

(
𝐿−1 − 𝜆𝑘

)
=

𝑢∏
𝑘=1

(1 − 𝜆𝑘𝐿) ,

where 𝑣 is the dimension of F. It follows that,

B(𝐿−1)−1M
(
𝐿−1) = H Adj

(
I − (F − FKH) 𝐿−1) (𝚽 − FK𝚿𝐿−1) +𝚿

∏𝑢
𝑘=1

(
1 − 𝜆𝑘𝐿−1)∏𝑢

𝑘=1 (1 − 𝜆𝑘𝐿−1)
=

H Adj (I𝐿 − (F − FKH)) (𝚽𝐿 − FK𝚿) + 𝐿𝑣−𝑢𝚿∏𝑢
𝑘=1 (𝐿 − 𝜆𝑘)

𝐿𝑣−𝑢
∏𝑢

𝑘=1 (𝐿 − 𝜆𝑘)
≡ G′(𝐿)
𝐿𝑣−𝑢

∏𝑢
𝑘=1 (𝐿 − 𝜆𝑘) .

With Lemma A.1, it is straightforward to show that the optimal prediction is given by[
ϕ(𝐿)M′(𝐿−1)B′(𝐿−1)−1

]
+
V−1B(𝐿)−1x𝑖𝑡 = ϕ(𝐿)M′(𝐿−1)ρ𝑥𝑥(𝐿)−1x𝑖𝑡

−
(
𝑢∑
𝑘=1

ϕ(𝜆𝑘)G(𝜆𝑘)
(𝐿 − 𝜆𝑘)𝜆𝑣−𝑢𝑘

∏
𝜏≠𝑘(𝜆𝑘 − 𝜆𝜏) +

𝑣−𝑢−1∑
𝑘=0

1
𝑘!𝐿𝑣−𝑢−𝑘

[
ϕ(𝐿)G(𝐿)∏𝑢
𝜏=1(𝐿 − 𝜆𝜏)

] (𝑘)
𝐿=0

)
V−1B(𝐿)−1x𝑖𝑡 .

A.5 Proof of Lemma 3.2

Weproceed in two steps. Wefist construct thematrixT(𝐿)using theWiener-Hopf prediction formula, and thenwedetermine
the number of endogenous constants that need to be determined.

Part I: constructing T(𝐿). Following Assumption 1, we specify the relevant inside poles in the following way

(β(𝐿) − I𝑟)M′(𝐿−1)B′(𝐿−1)−1 =
β̂(𝐿)G(𝐿)∏ℓ
𝑘=1(𝐿 − 𝛿𝑘)𝑎𝑘

,

γ(𝐿)M′(𝐿−1)B′(𝐿−1)−1 =
γ̂(𝐿)G(𝐿)∏ℓ
𝑘=1(𝐿 − 𝛿𝑘)𝑎𝑘

,

θ(𝐿)M′(𝐿−1)B′(𝐿−1)−1 =
θ̂(𝐿)G(𝐿)∏ℓ
𝑘=1(𝐿 − 𝛿𝑘)𝑎𝑘

,

where |𝛿𝑘 | < 1 and the expansions of β̂(𝐿), γ̂(𝐿), θ̂(𝐿) contain only positive powers of 𝐿.²⁹ Note that {𝛿𝑘} collect all the inside
poles of the primitives β(𝐿), γ(𝐿), and θ(𝐿), and also the inside poles of M′(𝐿−1)B′(𝐿−1)−1 which are {𝜆𝑘} and zeros.

The best response can be written as

E𝑖𝑡[(β(𝐿) − I𝑟)𝑎𝑖𝑡] + E𝑖𝑡[ξ𝑖𝑡] + E𝑖𝑡[γ(𝐿)𝑎𝑡] = 0.

²⁹Note that it is not necessary the case that those three fractions share the same inside poles. One can always set β̂(𝐿),
γ̂(𝐿), and θ̂(𝐿) to remove the poles.
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Denote a𝑖𝑡 = h(𝐿)M(𝐿)x𝑖𝑡 as the equilibrium policy rule. It follows that a𝑡 = h(𝐿)M(𝐿)𝚲s𝑖𝑡 . By the Wiener-Hopf prediction
formula and Lemma A.1, we have

E𝑖𝑡[(β(𝐿) − I𝑟)a𝑖𝑡] = (β(𝐿) − I𝑟)h(𝐿)x𝑖𝑡 −
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

[
β̂(𝐿)h(𝐿)M(𝐿)G(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

V−1B(𝐿)−1x𝑖𝑡 ,

E𝑖𝑡[γ(𝐿)a𝑡] = γ(𝐿)h(𝐿)M(𝐿)𝚲M′(𝐿−1)ρ𝑥𝑥(𝐿)−1x𝑖𝑡 −
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

[
γ̂(𝐿)h(𝐿)M(𝐿)𝚲G(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

V−1B(𝐿)−1x𝑖𝑡 ,

E𝑖𝑡[ξ𝑖𝑡] = θ(𝐿)M′(𝐿−1)ρ𝑥𝑥(𝐿)−1x𝑖𝑡 −
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

[
θ̂(𝐿)G(𝐿)∏
ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

] (𝜏)
𝐿=𝛿𝑘

V−1B(𝐿)−1x𝑖𝑡 .

This has to be true for all the possible realizations of {x𝑖𝑡}, which leads to the following fixed-point problem³⁰

((β(𝐿) − I𝑟) ⊗ I𝑛)vec(h′(𝐿)) + (γ(𝐿) ⊗ ρ′𝑥𝑥(𝐿)−1M(𝐿−1)𝚲M′(𝐿))vec(h′(𝐿)) =

− (I𝑟 ⊗ ρ′𝑥𝑥(𝐿)−1M(𝐿−1))vec(θ′(𝐿)) + (I𝑟 ⊗ B′(𝐿)−1V−1)
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec

©­«
[

G′(𝐿)θ̂′(𝐿)∏
ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

] (𝜏)
𝐿=𝛿𝑘

ª®¬
+ (I𝑟 ⊗ B′(𝐿)−1V−1)

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec

©­«
[
G′(𝐿)M′(𝐿)h′(𝐿)β̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

ª®¬
+ (I𝑟 ⊗ B′(𝐿)−1V−1)

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec

([
G′(𝐿)𝚲M′(𝐿)h′(𝐿)γ̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

)
.

Multiplying I𝑟 ⊗ ρ′𝑥𝑥(𝐿) to both sides yields

T(𝐿)vec(h′(𝐿)) = −(I𝑟 ⊗ M(𝐿−1))vec(θ′(𝐿)) +
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

(I𝑟 ⊗ B(𝐿−1))
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec

©­«
[

G′(𝐿)θ̂′(𝐿)∏
ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

] (𝜏)
𝐿=𝛿𝑘

ª®¬
+ (I𝑟 ⊗ B(𝐿−1))

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

©­«vec ©­«
[
G′(𝐿)M′(𝐿)h′(𝐿)β̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

ª®¬ + vec

([
G′(𝐿)𝚲M′(𝐿)h′(𝐿)γ̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

)ª®¬ , (A.3)

where T(𝐿) is (
(β(𝐿) − I𝑟) ⊗ M(𝐿−1)M′(𝐿) + (γ(𝐿) ⊗ M(𝐿−1)𝚲M′(𝐿))

)
.

Part II: determine the number of free constants. There are endogenous constants {h(𝜏)(𝛿𝑘)} in condition (A.3) that
remain to be determined. However, these constants may affect vec(h′(𝐿)) in a linearly-dependent way. To count the degree
of freedom of these constants properly, we rewrite the last term in condition (A.3) as follows:

(I𝑟 ⊗ B(𝐿−1))
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

©­«vec ©­«
[
G′(𝐿)M′(𝐿)h′(𝐿)β̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

ª®¬ + vec

([
G′(𝐿)𝚲M′(𝐿)h′(𝐿)γ̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

)ª®¬
≡(I𝑟 ⊗ B(𝐿−1))

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 A𝜏(𝛿𝑘)vec

(
h(𝛿𝑘) h(1)(𝛿𝑘) . . . h(𝜏)(𝛿𝑘)

)
³⁰We use the following property of Kronecker product: vec(ABC) = (C′ ⊗ A)vec(B).
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=(I𝑟 ⊗ B(𝐿−1))
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

A𝜏(𝛿𝑘)
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 Ã𝜏(𝛿𝑘)vec

(
h(𝛿𝑘) h(1)(𝛿𝑘) . . . h(𝜏)(𝛿𝑘)

)
, (A.4)

where the constant matrices A𝜏(𝛿𝑘) are simply constructed by collecting the corresponding exogenous terms, and A𝜏(𝛿𝑘) =
A𝜏(𝛿𝑘)Ã𝜏(𝛿𝑘) are obtained via the rank factorization. As a result, A𝜏(𝛿𝑘) is with full column rank and Ã𝜏(𝛿𝑘) is with full row
rank. Accordingly, we can write (A.4) as the product of D1(𝐿) and ψ, where

D1(𝐿) ≡ (I𝑟 ⊗ B(𝐿−1))
[

A0(𝛿1)
0!(𝐿−𝛿1)𝑎1 . . .

A𝑎1−1(𝛿1)
(𝑎1−1)!(𝐿−𝛿1)1 . . . . . . A0(𝛿ℓ )

0!(𝐿−𝛿ℓ )𝑎ℓ . . .
A𝑎ℓ −1(𝛿ℓ )

(𝑎ℓ−1)!(𝐿−𝛿ℓ )1
]

and

ψ ≡
[
Ã0(𝛿1)vec

(
h(𝛿1)

)
. . . Ã𝑎1−1(𝛿1)vec

(
h(𝛿1) . . . h(𝑎1−1)(𝛿1)

)
. . . . . . Ã𝑎ℓ−1(𝛿ℓ )vec

(
h(𝛿ℓ ) . . . h(𝑎ℓ−1)(𝛿ℓ )

)] ′
.

We also define D2(𝐿) as

D2(𝐿) ≡ −(I𝑟 ⊗ M(𝐿−1))vec(θ′(𝐿)) +
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

(I𝑟 ⊗ B(𝐿−1))
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec

©­«
[

G′(𝐿)θ̂′(𝐿)∏
ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

] (𝜏)
𝐿=𝛿𝑘

ª®¬ .
Taking stock, the equilibrium policy rule h(𝐿) needs to satisfy

T(𝐿)vec(h′(𝐿)) = D1(𝐿)ψ + D2(𝐿).

Here, by construction, D1(𝐿) is with full column rank, and its number of columns is given by 𝑁𝜓:

𝑁𝜓 =
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

rank(A𝜏(𝛿𝑘)).

A.6 Proof of Theorem 1

Proof. In order for h(𝐿) to be a valid equilibrium policy rule, not only h(𝐿) has to satisfy condition (3.13), but also it cannot
contain any inside poles to guarantee it only use current or past information. We proceed in two steps: first, we specify the
inside poles of h(𝐿) that needs to be removed; second, we discuss whether these inside poles can be removed.

Part I: inside poles. To see the possible poles of h(𝐿), we again consider the state-space representation of M(𝐿) and B(𝐿).
Recall from the proof of Proposition 3.1, the signal process can be expressed with the state-space representation

M(𝐿) = H (I − F𝐿)−1 𝚽 +𝚿 =
HAdj(I − F𝐿)𝚽 +𝚿

∏𝑑
𝑘=1(1 − 𝜘𝑘𝐿)∏𝑑

𝑘=1(1 − 𝜘𝑘𝐿)
≡ M1(𝐿)∏𝑑

𝑘=1(1 − 𝜘𝑘𝐿)
,

M(𝐿−1) = HAdj(I𝐿 − F)𝚽𝐿 +𝚿𝐿𝑣−𝑑
∏𝑑

𝑘=1(𝐿 − 𝜘𝑘)
𝐿𝑣−𝑑

∏𝑑
𝑘=1(𝐿 − 𝜘𝑘)

≡ M2(𝐿)
𝐿𝑣−𝑑

∏𝑑
𝑘=1(𝐿 − 𝜘𝑘)

,

where 𝑑 is the number of non-zero eigenvalues of F and {𝜘𝑘} are the corresponding eigenvalues. By construction, all ele-
ments of M1(𝐿) and M2(𝐿) are polynomials in 𝐿.
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Similarly,

B(𝐿) = I + H[I − F𝐿]−1FK𝐿 =
HAdj(I − F𝐿)FK𝐿 + I

∏𝑑
𝑘=1(1 − 𝜘𝑘𝐿)∏𝑑

𝑘=1(1 − 𝜘𝑘𝐿)
≡ B1(𝐿)∏𝑑

𝑘=1(1 − 𝜘𝑘𝐿)
,

B(𝐿−1) = HAdj(I𝐿 − F)FK + I𝐿𝑣−𝑑
∏𝑑

𝑘=1(𝐿 − 𝜘𝑘)
𝐿𝑣−𝑑

∏𝑑
𝑘=1(𝐿 − 𝜘𝑘)

≡ B2(𝐿)
𝐿𝑣−𝑑

∏𝑑
𝑘=1(𝐿 − 𝜘𝑘)

,

where all elements of B1(𝐿) and B2(𝐿) are polynomials in 𝐿.

We can now write T(𝐿) as

T(𝐿) = (β(𝐿) − I) ⊗ (M2(𝐿)M′
1(𝐿)) + γ(𝐿) ⊗ M2(𝐿)𝚲M′

1(𝐿)
𝐿𝑣−𝑑

∏𝑑
𝑘=1(1 − 𝜘𝑘𝐿)(𝐿 − 𝜘𝑘)

,

and the equilibrium policy rule in condition (3.13) can be expressed as

vec(h′(𝐿)) =
(
𝑑∏
𝑘=1

(1 − 𝜘𝑘𝐿)
) (

(β(𝐿) − I) ⊗ (M2(𝐿)M′
1(𝐿)) + γ(𝐿) ⊗ M2(𝐿)𝚲M′

1(𝐿)
)−1

{
− (I𝑟 ⊗ M2(𝐿−1))vec(θ′(𝐿)) +

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

(I𝑟 ⊗ B2(𝐿−1))
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec ©­«

[
G′(𝐿)θ̂′(𝐿)∏
ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

] (𝜏)
𝐿=𝛿𝑘

ª®¬
+ (I𝑟 ⊗ B2(𝐿−1))

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

©­«vec ©­«
[
G′(𝐿)M′(𝐿)h′(𝐿)β̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

ª®¬ + vec

([
G′(𝐿)𝚲M′(𝐿)h′(𝐿)γ̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

)ª®¬
}

(A.5)

Note that poles at {𝛿𝑘} are already removed by construction with the annihilation operator. As a result, the inside poles of
h(𝐿) only come from the inside roots of det[T(𝐿)], which are {𝜁1 , 𝜁2 , . . . , 𝜁𝑁𝜁 }.

Part II: removing the inside poles. Letϕ(𝐿) be a vector of rational functions in 𝐿with length 𝑟×𝑛, where its 𝑖-th element
𝜙𝑖(𝐿) is given by

𝜙𝑖(𝐿) ≡ det
[
T1(𝐿) . . . T𝑖−1(𝐿) D1(𝐿)ψ + D2(𝐿) T𝑖+1(𝐿) . . . . . . T𝑟𝑛(𝐿)

]
.

By Cramer’s rule, the policy rule vec(h′(𝐿)) that solves equation (3.13) is given by

vec(h′(𝐿)) = ϕ(𝐿)
det[T(𝐿)] .

In order to remove the inside pole at 𝜁 𝑗 for 𝑗 ∈ {1, . . . , 𝑁𝜁}, we need to solve for the vector of constants ψ such that 𝜁 𝑗 is a
root of 𝜙𝑖(𝐿) for 𝑖 ∈ {1, . . . , 𝑟𝑛}, and the existence and uniqueness of the equilibrium depends on existence and uniqueness
of the vector of ψ.

Denote 𝒫𝑗 as the index set such that

𝒫𝑗 = {𝑖 ∈ {1, . . . , 𝑟𝑛} : there exists some ψ such that 𝜙𝑖(𝜁 𝑗) ≠ 0.}

Throughout, we consider the relevant case where 𝒫𝑗 ≠ ∅ for all 𝑗 ∈ {1, . . . , 𝑁𝜁}, that is, the inside poles {𝜁 𝑗} are not auto-
matically removed.

We first establish the following results: for 𝑖 ∈ 𝒫𝑗 , when 𝜙𝑖(𝜁 𝑗) = 0, then 𝜙𝑘(𝜁 𝑗) = 0 for 𝑘 ≠ 𝑖. Note that 𝜙𝑖(𝜁 𝑗) = 0 implies
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the following³¹
D1(𝜁 𝑗)ψ + D2(𝜁 𝑗) =

∑
𝜏≠𝑖

𝜅𝜏T𝜏(𝜁 𝑗),

where 𝜅𝜏 ≠ 0 for some 𝜏. As a result, for any 𝑘 ≠ 𝑖,

𝜙𝑘(𝜁 𝑗) = det
[
T1(𝜁 𝑗) . . . D1(𝜁 𝑗)ψ + D2(𝜁 𝑗)︸                ︷︷                ︸

𝑘-th column

. . . T𝑟𝑛(𝜁 𝑗)
]

=
∑
𝜏≠𝑖

det
[
T1(𝜁 𝑗) . . . 𝜅𝜏T𝜏(𝜁 𝑗)︸    ︷︷    ︸

𝑘-th column

. . . T𝑟𝑛(𝜁 𝑗)
]

= det
[
T1(𝜁 𝑗) . . . 𝜅𝑘T𝑘(𝜁 𝑗)︸    ︷︷    ︸

𝑘-th column

. . . T𝑟𝑛(𝜁 𝑗)
]

= 0,

where the last equality comes from the fact that det
[
T(𝜁 𝑗)

]
= 0 as 𝜁 𝑗 is a root of det[T(𝐿)].

Next, we proceed to solve for the vector ψ. For a collection of indexes ι = {𝜄1 , . . . , 𝜄𝑁𝜁 } where 𝜄 𝑗 ∈ 𝒫𝑗 , define the pair of
exogenous constant matrices {U1(ι),U2(ι)} as

U1(ι)ψ + U2(ι) =
[
𝜙𝜄1(𝜁1) . . . 𝜙𝜄𝑁𝜁

(𝜁𝑁𝜁 )
] ′
.

Let 𝑁rank be given by
𝑁rank ≡ max

ι
rank(U1(ι)).

We first consider the generic case where 𝑁rank = 𝑁𝜁.

• If 𝑁𝜁 = 𝑁𝜓, then there exists a unique equilibrium. Let ι∗ ∈ argmaxι rank(U1(ι)). There exists a unique ψ∗ such that

U1(ι∗)ψ + U2(ι∗) = 0. (A.6)

As a result, with D1(𝐿)ψ∗ + D2(𝐿), we have [
𝜙𝜄1(𝜁1) . . . 𝜙𝜄𝑁𝜁

(𝜁𝑁𝜁 )
] ′

= 0

for any ι = {𝜄1 , . . . , 𝜄𝑁𝜁 } where 𝜄 𝑗 ∈ {1, . . . , 𝑟𝑛}, as we have shown that 𝜙𝑖(𝜁 𝑗) = 0 leads to 𝜙𝑘(𝜁 𝑗) = 0 for 𝑘 ≠

𝑖. By the same logic, it also follows that ψ∗ does not depend on the the choice of 𝜄∗ given that is chosen among
argmaxι rank(U1(ι))
The equilibrium policy rule that satisfies conditon (3.13) can be expressed as

vec(h′(𝐿)) = T(𝐿)−1
(
− D1(𝐿)U1(ι∗)−1U2(ι∗) + D2(𝐿)

)
.

• If 𝑁𝜁 < 𝑁𝜓, then there exists an infinite number of solutions.

³¹Note that if {T1(𝜁 𝑗), . . . ,T𝑖−1(𝜁 𝑗),T𝑖+1(𝜁 𝑗), . . . ,T𝑛𝑟 (𝜁 𝑗)} are linearly dependent, then for any ψ, 𝜙𝑖(𝜁 𝑗) = 0, which
implies the inside pole 𝜁 𝑗 is automatically removed.
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To complete the picture, consider the case where 𝑁rank < 𝑁𝜁.

• If there exists any ι = {𝜄1 , . . . , 𝜄𝑁𝜁 } where 𝜄 𝑗 ∈ 𝒫𝑗 such that rank(U1(ι),U2(ι)) > rank(U1(ι)), then there does not exist
an equilibrium.

• If for any ι = {𝜄1 , . . . , 𝜄𝑁𝜁 } where 𝜄 𝑗 ∈ 𝒫𝑗 , rank(U1(ι),U2(ι)) = rank(U1(ι)), then there exists at least one equilibrium.

□

Remark. To see why it is necessary to consider the case where 𝑁rank < 𝑁𝜁, we explore the following problem. Assume
the best response is [

𝑎1
𝑡

𝑎2
𝑡

]
=

[
1
1

]
𝑠𝑡 +

[
1

𝜌1+𝜌2
0

0 1
𝜃1+𝜃2

] [
E𝑖𝑡[𝑎1

𝑡+1]
E𝑖𝑡[𝑎2

𝑡+1]

]
+

[
𝜌1𝜌2
𝜌1+𝜌2

0
0 𝜃1𝜃2

𝜃1+𝜃2

] [
𝑎1
𝑡−1
𝑎2
𝑡−1

]
,

and the signal is 𝑥𝑡 = 𝑠𝑡 . This is a perfect information economy, with 𝑟 = 2, 𝑚 = 1, and 𝑛 = 1. What is special about this
economy is that the two actions are independent of each other, similar to the examples discussed in Sims (2007), Onatski
(2006), and Tan and Walker (2015).

Let 𝑎1
𝑡 = ℎ1(𝐿)𝑠𝑡 and 𝑎2

𝑡 = ℎ2(𝐿)𝑠𝑡 as the equilibrium policy rules, which need to satisfy the following condition[
𝐿−1−(𝜌1+𝜌2)+𝜌1𝜌2𝐿

𝜌1+𝜌2
0

0 𝐿−1−(𝜃1+𝜃2)+𝜃1𝜃2𝐿
𝜃1+𝜃2

]
︸                                            ︷︷                                            ︸

T(𝐿)

[
ℎ1(𝐿)
ℎ2(𝐿)

]
=

[
𝐿−1

(𝜌1+𝜌2) 0
0 𝐿−1

(𝜃1+𝜃2)

]
︸                 ︷︷                 ︸

D1(𝐿)

[
ℎ1(0)
ℎ2(0)

]
︸  ︷︷  ︸

ψ

+
[
−1
−1

]
︸︷︷︸
D2(𝐿)

.

The roots of T(𝐿) are {𝜌−1
1 , 𝜌−1

2 , 𝜃−1
1 , 𝜃−1

2 }. Consider the case where |𝜌1 | < 1, |𝜌2 | < 1, |𝜃1 | > 1, and |𝜃2 | > 1, that is, the
inside roots are {𝜃−1

1 , 𝜃−1
2 }. Clearly, since the the two actions are independent and both of the two inside roots are from 𝑎2

𝑡 ,
there should be no solution. If we simply count the number of inside roots, 𝑁𝜁 = 2, and the number of constants, 𝑁𝜓 = 2, it
may seem to be the case that there is a unique solution. The flaw of this logic is that we still need to check 𝑁rank.

With this parameterization, it is straightforward to verify that the index set 𝒫1 = 𝒫2 = {2}, and it follows ι = {2, 2}.
Therefore, we have [

𝜙2(𝜃−1
1 )

𝜙2(𝜃−1
2 )

]
=


0 𝜃2

1−(𝜌1+𝜌2)𝜃1+𝜌1𝜌2
(𝜌1+𝜌2)(𝜃1+𝜃2)

0 𝜃2
2−(𝜌1+𝜌2)𝜃2+𝜌1𝜌2
(𝜌1+𝜌2)(𝜃1+𝜃2)

︸                       ︷︷                       ︸
U1(ι)

[
ℎ1(0)
ℎ2(0)

]
+


−𝜃1−(𝜌1+𝜌2)+𝜌1𝜌2𝜃−1

1
𝜌1+𝜌2

−𝜃2−(𝜌1+𝜌2)+𝜌1𝜌2𝜃−1
2

𝜌1+𝜌2

︸                     ︷︷                     ︸
U2(ι)

Note that rank(U1(ι)) < rank(U1(ι),U2(ι)). Therefore, we can correctly conclude that there is no equilibrium.

A.7 Extension to Network Games

Consider the following network game. There are 𝑟 different groups of agents, and there are a continuum of agents within
each group. For agent 𝑖 in group 𝑗, her best response is

𝑎𝑖, 𝑗 ,𝑡 = E𝑖 , 𝑗 ,𝑡[𝜃𝑖 , 𝑗 ,𝑡] + 𝛽 𝑗(𝐿)𝑎𝑖,𝑟 ,𝑡 +
𝑟∑
𝑘=1

𝛾𝑗𝑘(𝐿)𝑎𝑘𝑡 ,
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where 𝑎𝑘𝑡 is the aggregate outcome of group 𝑘, 𝛽 𝑗(𝐿) captures the PE consideration for group 𝑗, and 𝛾𝑗𝑘(𝐿) captures the GE
dependence on different groups in the economy.

In addition to the heterogeneity in payoff structures, we also allow agents to have different information structures. Denote
the signals observed by agent 𝑖 in group 𝑗 as

x𝑖 , 𝑗 ,𝑡 = M𝑗(𝐿)s𝑖, 𝑗 ,𝑡
Note that in this economy, the shocks at the group level cannot be washed out in aggregate. Denote 𝑎𝑖 , 𝑗 ,𝑡 = h𝑗(𝐿)x𝑖 , 𝑗 ,𝑡 as the
equlibrium policy rule. It follows that the aggregate outcome in group 𝑗 is

𝑎 𝑗𝑡 =
∫

𝑎𝑖, 𝑗 ,𝑡 = h𝑗(𝐿)M𝑗(𝐿)𝚲s𝑖 , 𝑗 ,𝑡 .

Now consider the inference problem. We assume that all agents’ signals follow ARMA processes and 𝛽 𝑗(𝐿) and 𝛾𝑗𝑘(𝐿) are
rational functions in 𝐿. We denote

(𝛽 𝑗(𝐿) − 1)M′
𝑗(𝐿−1)B′

𝑗(𝐿−1)−1 =
𝛽̂ 𝑗(𝐿)G𝑗(𝐿)∏ℓ
𝑘=1(𝐿 − 𝛿𝑘)𝑎𝑘

,

𝛾𝑗𝑘(𝐿)M′
𝑗(𝐿−1)B′

𝑗(𝐿−1)−1 =
𝛾̂𝑗(𝐿)G(𝐿)∏ℓ
𝑘=1(𝐿 − 𝛿𝑘)𝑎𝑘

,

𝜃𝑗(𝐿)M′
𝑗(𝐿−1)B′

𝑗(𝐿−1)−1 =
𝜃𝑗(𝐿)G𝑗(𝐿)∏ℓ
𝑘=1(𝐿 − 𝛿𝑘)𝑎𝑘

,

where G𝑗(𝐿) is constructed in a similar way as in Parallel to the proof of Proposition 3.1, and {𝛿𝑘} collect the eigenvalues of
F𝑗 − F𝑗K𝑗H𝑗 for all 𝑗 and the inside poles from the payoff structures.

From the best response, the following has to hold for group 𝑗

(𝛽 𝑗(𝐿) − 1)ρ′𝑗,𝑥𝑥(𝐿)h′
𝑗(𝐿) +

𝑟∑
𝑞=1

𝛾𝑗𝑞(𝐿)M𝑗(𝐿−1)𝚲M′
𝑞(𝐿)h′

𝑞(𝐿) = 𝑅 𝑗(𝐿),

where

𝑅 𝑗(𝐿) = − M𝑗(𝐿−1))θ′𝑗(𝐿)+
ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

B𝑗(𝐿−1)
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

©­­«


G′
𝑗(𝐿)θ̂′𝑗(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

(𝜏)

𝐿=𝛿𝑘

+

G′
𝑗(𝐿)M′

𝑗(𝐿)h′
𝑗(𝐿)𝛽̂ 𝑗(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

(𝜏)

𝐿=𝛿𝑘

+
𝑟∑
𝑞=1

[
G′
𝑗(𝐿)𝚲M′

𝑞(𝐿)h′
𝑞(𝐿)𝛾̂𝑗𝑞(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

ª®®¬ .
To set up the fixed-point problem, we define the following objects

M(𝐿) ≡

M1(𝐿)

. . .

M𝑟(𝐿)

 , β(𝐿) ≡

𝛽1(𝐿)

. . .

𝛽𝑟(𝐿)

 , γ(𝐿) ≡

𝛾11(𝐿) . . . 𝛾1𝑟(𝐿)
...

. . .
...

𝛾𝑟1(𝐿) . . . 𝛾𝑟𝑟(𝐿)

 , R(𝐿) ≡

𝑅1(𝐿)
...

𝑅𝑟(𝐿)

 .
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By collecting the best responses for all 𝑟 groups, we reach the functional equation of the equilibrium policy rule has to hold

T(𝐿)

h′

1(𝐿)
...

h′
𝑟(𝐿)

 = D1(𝐿)ψ + D2(𝐿).

Here, the matrices T(𝐿) is given by

T(𝐿) = M(𝐿−1)(β(𝐿) − I)M′(𝐿) + M(𝐿−1)(γ(𝐿) ⊗ 𝚲)M′(𝐿),

and the matrices D1(𝐿) and D2(𝐿), and the endogenous constants ψ are defined as

D1(𝐿)ψ + D2(𝐿) = R(𝐿)

with D1(𝐿) being with full column rank.

To determine the uniqueness and existence of the equilibrium policy rule, the procedure is identical to that in the proof of
Theorem 1. Therefore, our results on the equilibrium policy rule and the finite-state representation extend to network games
with incomplete information.

A.8 Proof of Corollary 3.1

Proof. The equilibrium outcome is given by

a𝑖𝑡 = h(𝐿)M(𝐿)s𝑖𝑡 .

Using the equilibrium policy representation (A.5) and the state-space representation of the signal process, we have

vec(h(𝐿)M(𝐿))′ = 1∏𝑑
𝑘=1(1 − 𝜘𝑘𝐿)

(I ⊗ M′
1(𝐿))vec(h′(𝐿))

=
(
(β(𝐿) − I) ⊗ (M2(𝐿)M′

1(𝐿)) + γ(𝐿) ⊗ M2(𝐿)𝚲M′
1(𝐿)

)−1

{
− (I𝑟 ⊗ M2(𝐿−1))vec(θ′(𝐿)) +

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

(I𝑟 ⊗ B2(𝐿−1))
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏 vec ©­«

[
G′(𝐿)θ̂′(𝐿)∏
ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ

] (𝜏)
𝐿=𝛿𝑘

ª®¬
+ (I𝑟 ⊗ B2(𝐿−1))

ℓ∑
𝑘=1

𝑎𝑘−1∑
𝜏=0

1
𝜏!(𝐿 − 𝛿𝑘)𝑎𝑘−𝜏

©­«vec ©­«
[
G′(𝐿)M′(𝐿)h′(𝐿)β̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

ª®¬ + vec

([
G′(𝐿)𝚲M′(𝐿)h′(𝐿)γ̂(𝐿)∏

ℎ≠𝑘(𝐿 − 𝛿ℎ)𝑎ℎ
] (𝜏)
𝐿=𝛿𝑘

)ª®¬
}

Notice that the only possible auto-regressive parameters are from θ(𝐿) and the roots of det[T(𝐿)]. □

A.9 Proof of Corollary 3.2

Proof. The proof follows from the main text. □
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A.10 Proof of Corollary 3.3

Under Assumption 2, we can iterate individual’s best response forward by the law of iterated expectations

a𝑖𝑡 = E𝑖𝑡[ξ𝑖𝑡] + E𝑖𝑡[𝛽(𝐿)a𝑖𝑡] + E𝑖𝑡[𝛾(𝐿)a𝑡]
= E𝑖𝑡[(𝐼 − 𝛽(𝐿))−1(ξ𝑖𝑡 + 𝛾(𝐿)a𝑡)]
= E𝑖𝑡[(𝐼 − 𝛽(𝐿))−1ξ𝑖𝑡] + E𝑖𝑡

[
(𝐼 − 𝛽(𝐿))−1𝛾(𝐿)E𝑖𝑡

[
(𝐼 − 𝛽(𝐿))−1

(∫
𝑗
ξ𝑗𝑡 + 𝛾(𝐿)a𝑡

)] ]
= E𝑖𝑡[(𝐼 − 𝛽(𝐿))−1ξ𝑖𝑡] + E𝑖𝑡

[
(𝐼 − 𝛽(𝐿))−1𝛾(𝐿)E𝑖𝑡

[
(𝐼 − 𝛽(𝐿))−1

∫
𝑗
ξ𝑗𝑡

] ]
+E𝑖𝑡

[
(𝐼 − 𝛽(𝐿))−1𝛾(𝐿)E𝑖𝑡

[
(𝐼 − 𝛽(𝐿))−1𝛾(𝐿)

[
(𝐼 − 𝛽(𝐿))−1

∫
𝑗
ξ𝑗𝑡

] ] ]
+ ...

Then, the variance of implied individual action is bounded by constant times the variance of fundamental as

V[a𝑖𝑡] ≤ V[(𝐼 − 𝛽(𝐿))−1 + (𝐼 − 𝛽(𝐿))−1𝛾(𝐿)(𝐼 − 𝛽(𝐿))−1 + (𝐼 − 𝛽(𝐿))−1𝛾(𝐿)(𝐼 − 𝛽(𝐿))−1𝛾(𝐿)(𝐼 − 𝛽(𝐿))−1 + ...)ξ𝑖𝑡]
= V[(𝐼 − 𝛽(𝐿))−1{𝐼 − 𝛾(𝐿)(𝐼 − 𝛽(𝐿))−1}−1ξ𝑖𝑡]
= V[{𝐼 − 𝛽(𝐿) − 𝛾(𝐿)}−1ξ𝑖𝑡]
≤ {𝐼 − 𝛽(1) − 𝛾(1)}−1V[ξ𝑖𝑡]({𝐼 − 𝛽(1) − 𝛾(1)}−1)′.

With exogenous signals, all the higher-order expectations are determined exogenously. Since the variance of 𝑎𝑖𝑡 is bounded,
it implies that there exists a unique solution. Aggregating across agents, the aggregate outcome can be expressed as

a𝑡 = E𝑡[(𝐼 − 𝛽(𝐿))−1ξ𝑖𝑡] + E𝑡[(𝐼 − 𝛽(𝐿))−1𝛾(𝐿)a𝑡)] =
∞∑
𝑘=0

F
𝑘
𝑡 [(I − β(𝐿))−1ξ𝑖𝑡],

where F
𝑘+1[𝑋] = E[(I−β(𝐿))−1γ(𝐿)F𝑘[𝑋]]. The proof is then completed by equating the higher-order expectations with the

result from Corollary 3.1.

A.11 Proof of Proposition 4.1

The state equation and the observation equation are

𝜉𝑡 = 𝜌︸︷︷︸
F

𝜉𝑡−1 + 𝜎𝜂︸︷︷︸
𝚽

𝜂̂𝑡 ,

[
𝑥1
𝑖𝑡

𝑥2
𝑖𝑡

]
=

[
1
1

]
︸︷︷︸

H

𝜉𝑡 +
[
𝜎𝜀 0
0 𝜎𝑢

]
︸     ︷︷     ︸

𝚿

[
𝜀̂𝑡

𝑢̂𝑖𝑡

]
,

where 𝜂𝑡 = 𝜎𝜂𝜂̂𝑡 , 𝜀𝑡 = 𝜀̂𝑡 , and 𝑢𝑖𝑡 = 𝜎𝑢 𝑢̂𝑖𝑡 .

By Theorem 3.2, the prior variance of the state 𝜉𝑡 and the Kalman gain matrix satisfies

P = F[P − PH′(HPH′ +𝚿𝚿′)−1HP]F′ +𝚽𝚽′, K = PH′(HPH′ +𝚿𝚿′)−1 ,
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Denote 𝜅 ≡ P−1 as the prior precision about 𝜉𝑡 , it is easy to verify that

𝜎2
𝑢𝜎

2
𝜀𝜅

2 = [(1 − 𝜌2)𝜎2
𝑢𝜎

2
𝜀 − 𝜎2

𝑢𝜎
2
𝜂 − 𝜎2

𝜀𝜎
2
𝜂 ]𝜅 + (𝜎2

𝑢 + 𝜎2
𝜀 )𝜎2

𝜂 , K =
[
𝜎2
𝑢(𝜎2

𝑢𝜎
2
𝜀𝜅 + 𝜎2

𝑢 + 𝜎2
𝜀 )−1 𝜎2

𝜀 (𝜎2
𝑢𝜎

2
𝜀𝜅 + 𝜎2

𝑢 + 𝜎2
𝜀 )−1

]
.

Define 𝜏𝜀 ≡ 𝜎2
𝜂

𝜎2
𝜀
, 𝜏𝑢 ≡ 𝜎2

𝜂

𝜎2
𝑢
, and 𝜆 ≡ 𝜎2

𝑢𝜎
2
𝜀𝜅(𝜎2

𝑢𝜎
2
𝜀𝜅 + 𝜎2

𝑢 + 𝜎2
𝜀 )−1𝜌, and it follows that

𝜆 =
1
2


(

1
𝜌
+ 𝜌 + 𝜏𝑢 + 𝜏𝜀

𝜌

)
−

√(
1
𝜌
+ 𝜌 + 𝜏𝑢 + 𝜏𝜀

𝜌

)2

− 4
 .

The fundamental representation is given by

B(𝐿)−1 =
1

1 − 𝜆𝐿

[
1 − 𝜏𝜀𝜌+𝜆𝜏𝑢

𝜏𝜀+𝜏𝑢 𝐿 𝜏𝑢 (𝜆−𝜌)
𝜏𝜀+𝜏𝑢 𝐿

𝜏𝜀(𝜆−𝜌)
𝜏𝜀+𝜏𝑢 𝐿 1 − 𝜏𝑢𝜌+𝜆𝜏𝜀

𝜏𝜀+𝜏𝑢 𝐿

]
, V−1 =

𝜏𝑢𝜏𝜀
𝜌(𝜏𝜀 + 𝜏𝑢)

[
𝜏𝑢𝜌+𝜆𝜏𝜀

𝜏𝑢
𝜆 − 𝜌

𝜆 − 𝜌
𝜏𝜀𝜌+𝜆𝜏𝑢

𝜏𝜀

]
.

Assuming 𝑎𝑖𝑡 = ℎ1(𝐿)𝑥1
𝑖𝑡 + ℎ2(𝐿)𝑥2

𝑖𝑡 , it follows that

𝑎𝑡 = (ℎ1(𝐿) + ℎ2(𝐿))𝜉𝑡 + ℎ1(𝐿)𝜀𝑡 .

By Proposition 3.1, we have

E𝑖𝑡[𝜉𝑡] =

[
1

1−𝜆𝐿
𝜆𝜏𝜀

(1−𝜌𝜆)𝜌
1

1−𝜆𝐿
𝜆𝜏𝑢

(1−𝜌𝜆)𝜌

] ′ [
𝑥1
𝑖𝑡

𝑥2
𝑖𝑡

]
,

E𝑖𝑡[𝑎𝑡] =

[
𝜆𝜏𝜀
𝜌

𝐿
(1−𝜆𝐿)(𝐿−𝜆) (ℎ1(𝐿) + ℎ2(𝐿)) − 𝜆2𝜏𝜀

𝜌
1

1−𝜌𝜆
1−𝜌𝐿

(1−𝜆𝐿)(𝐿−𝜆) (ℎ1(𝜆) + ℎ2(𝜆))
𝜆𝜏𝑢
𝜌

𝐿
(1−𝜆𝐿)(𝐿−𝜆) (ℎ1(𝐿) + ℎ2(𝐿)) − 𝜆2𝜏𝑢

𝜌
1

1−𝜌𝜆
1−𝜌𝐿

(1−𝜆𝐿)(𝐿−𝜆) (ℎ1(𝜆) + ℎ2(𝜆))

] ′ [
𝑥1
𝑖𝑡

𝑥2
𝑖𝑡

]
+

[
𝜏𝑢

𝜏𝜀+𝜏𝑢 ℎ1(𝐿) + 𝜏𝜀
𝜏𝜀+𝜏𝑢

𝜆
𝜌
(𝐿−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆) ℎ1(𝐿) − 𝜏𝜀

𝜏𝜀+𝜏𝑢
𝜆
𝜌
(𝜆−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆) ℎ1(𝜆)

− 𝜏𝑢
𝜏𝜀+𝜏𝑢 ℎ1(𝐿) + 𝜏𝑢

𝜏𝜀+𝜏𝑢
𝜆
𝜌
(𝐿−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆) ℎ1(𝐿) − 𝜏𝑢

𝜏𝜀+𝜏𝑢
𝜆
𝜌
(𝜆−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆) ℎ1(𝜆)

] ′ [
𝑥1
𝑖𝑡

𝑥2
𝑖𝑡

]
.

Notice that
𝜆 + 1

𝜆
= 𝜌 + 1

𝜌
+ 𝜏𝜀 + 𝜏𝑢

𝜌
,

which leads to

E𝑖𝑡[𝑎𝑡] =

[
𝜆𝜏𝜀
𝜌

𝐿
(1−𝜆𝐿)(𝐿−𝜆) (ℎ1(𝐿) + ℎ2(𝐿)) + 𝜏𝑢

𝜏𝜀+𝜏𝑢 ℎ1(𝐿) + 𝜏𝜀
𝜏𝜀+𝜏𝑢

𝜆
𝜌
(𝐿−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆) ℎ1(𝐿) − 𝜆2𝜏𝜀

𝜌
1

1−𝜌𝜆
1−𝜌𝐿

(1−𝜆𝐿)(𝐿−𝜆) ℎ2(𝜆)
𝜆𝜏𝑢
𝜌

𝐿
(1−𝜆𝐿)(𝐿−𝜆) (ℎ1(𝐿) + ℎ2(𝐿)) − 𝜏𝑢

𝜏𝜀+𝜏𝑢 ℎ1(𝐿) + 𝜏𝑢
𝜏𝜀+𝜏𝑢

𝜆
𝜌
(𝐿−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆) ℎ1(𝐿) − 𝜆2𝜏𝑢

𝜌
1

1−𝜌𝜆
1−𝜌𝐿

(1−𝜆𝐿)(𝐿−𝜆) ℎ2(𝜆)

] ′ [
𝑥1
𝑖𝑡

𝑥2
𝑖𝑡

]
.

The best response requires that
𝑎𝑖𝑡 = (1 − 𝛼)E𝑖𝑡[𝜉𝑡] + 𝛼E𝑖𝑡[𝑦𝑡],

which yields the following system of analytic functions

T(𝐿)
[
ℎ1(𝐿)
ℎ2(𝐿)

]
=

[
−𝛼 𝜆2𝜏𝜀

𝜌
1

1−𝜌𝜆
1−𝜌𝐿

(1−𝜆𝐿)(𝐿−𝜆)
−𝛼 𝜆2𝜏𝜀

𝜌
1

1−𝜌𝜆
1−𝜌𝐿

(1−𝜆𝐿)(𝐿−𝜆)

]
︸                          ︷︷                          ︸

D1(𝐿)

ℎ2(𝜆)︸︷︷︸
ψ

+
[

1−𝛼
1−𝜆𝐿

𝜆𝜏𝜀
(1−𝜌𝜆)𝜌

1−𝛼
1−𝜆𝐿

𝜆𝜏𝑢
(1−𝜌𝜆)𝜌

]
︸           ︷︷           ︸

D2(𝐿)

,
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where T(𝐿) is

T(𝐿) =


1 − 𝛼 𝜆𝜏𝜀

𝜌
𝐿

(1−𝜆𝐿)(𝐿−𝜆) − 𝛼

(
𝜏𝑢

𝜏𝜀+𝜏𝑢 + 𝜏𝜀
𝜏𝜀+𝜏𝑢

𝜆
𝜌 (𝐿−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆)

)
−𝛼 𝜆𝜏𝜀

𝜌
𝐿

(1−𝜆𝐿)(𝐿−𝜆)

−𝛼 𝜆𝜏𝑢
𝜌

𝐿
(1−𝜆𝐿)(𝐿−𝜆) − 𝛼

(
− 𝜏𝑢

𝜏𝜀+𝜏𝑢 + 𝜏𝑢
𝜏𝜀+𝜏𝑢

𝜆
𝜌 (𝐿−𝜌)(1−𝜌𝐿)
(1−𝜆𝐿)(𝐿−𝜆)

)
1 − 𝛼 𝜆𝜏𝑢

𝜌
𝐿

(1−𝜆𝐿)(𝐿−𝜆)

 .
Note that

det[T(𝐿)] =
(1 − 𝛼)𝜆(𝐿 − 𝜗)(1 − 𝜗𝐿)

𝜗(1 − 𝜆𝐿)(𝐿 − 𝜆) ,

where 𝜗 is the inside root of the determinant of T(𝐿) given by

𝜗 =
1
2


(

1
𝜌
+ 𝜌 + 𝜏𝜀 + (1 − 𝛼)𝜏𝑢

𝜌

)
−

√(
1
𝜌
+ 𝜌 + 𝜏𝜀 + (1 − 𝛼)𝜏𝑢

𝜌

)2

− 4
 .

To remove the inside root of det[T(𝐿)], we choose ℎ2(𝜆) such that the following object is zero when evaluated at 𝐿 = 𝜗:

det
[
D1(𝐿)ℎ2(𝜆) + D2(𝐿) T2(𝐿)

]
=

1
(1 − 𝜆𝐿)(𝐿 − 𝜆)

{ (1 − 𝛼)𝜆(𝐿 − 𝜆)
(1 − 𝜌𝜆)𝜌𝜏1

− 𝛼
𝜆2

𝜌𝜏1

1
1 − 𝜌𝜆

(1 − 𝜌𝐿)ℎ2(𝜆)
}
,

which requires

ℎ2(𝜆) = (1 − 𝛼)(𝜗 − 𝜆)
𝛼𝜆(1 − 𝜌𝜗) .

Using the Cramer’s rule, we have

ℎ1(𝐿) = 𝜗𝜏𝜀
𝜌(1 − 𝜌𝜗)

1
1 − 𝜗𝐿

, ℎ2(𝐿) = (1 − 𝛼)𝜗𝜏𝑢
𝜌(1 − 𝜌𝜗)

1
1 − 𝜗𝐿

.

The aggregate outcome is then

𝑎𝑡 = (ℎ1(𝐿) + ℎ2(𝐿))𝜉𝑡 + ℎ2(𝐿)𝜀𝑡 =
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝜉𝑡 + 𝜏𝜀

𝜏𝜀 + (1 − 𝛼)𝜏𝑢
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝜀𝑡 ,

where the second equality uses the fact that

𝜏𝜀 + (1 − 𝛼)𝜏𝑢
𝜌

=
1
𝜗
+ 𝜗 − 1

𝜌
− 𝜌.

Denote 𝜏 ≡ (1 − 𝛼)𝜏𝑢 + 𝜏𝜀. From the definition of 𝜗, we have that 𝜗 satisfies

𝜗 + 1
𝜗

= 𝜌 + 1 + 𝜏
𝜌

. (A.7)

It is straightforward to show that
𝜕(𝜗 + 1

𝜕𝜗 )
𝜗

= −1 − 𝜗2

𝜗2 < 0,

and therefore the left-hand side of (A.7) is strictly decreasing in 𝜗, and the right-hand side of (A.7) is strictly increasing in 𝜏.
Therefore, When 𝜏 → 0, the right-hand side approaches to 𝜌 + 1

𝜌 , which implies the upper bound for 𝜗 is 𝜌. When 𝜏 → ∞,
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the right-hand side approaches to infinity, which implies the lower bound for 𝜗 is 0.

A.12 Proof of Proposition 4.2

In the proof of Proposition 4.1, we have shown that 𝜗 is decreasing in 𝜏 ≡ (1 − 𝛼)𝜏𝑢 + 𝜏𝜀. Therefore, 𝜗 is increasing in 𝛼.

Since 𝜏 is increasing in 𝜏𝑢 and 𝜏𝜀, it follows that 𝜗 is decreasing in 𝜏𝑢 and 𝜏𝜀. By the implicit function theorem, condition
(A.7) implies that

𝜕𝜗

𝜕𝜏𝑢
= (1 − 𝛼) 𝜕𝜗

𝜕𝜏𝜀
.

The volatility of the aggregate outcome driven by the common noise is given by

V[𝑎𝑡 |𝜉𝑡] = 𝜏−1
𝜀

(
𝜏𝜀

𝜏𝜀 + (1 − 𝛼)𝜏𝑢
(
1 − 𝜗

𝜌

))2 1
1 − 𝜗2

As only the composite of 𝜏̂ ≡ (1 − 𝛼)𝜏𝑢 matters, it is sufficient to determine how V[𝑎𝑡 |𝜉𝑡] depends on this composite. Again
using condition (A.7), we have

𝜕𝜗

𝜕𝜏̂
=

𝜗2

𝜌(𝜗2 − 1) .

The derivative of V[𝑎𝑡 |𝜉𝑡] with respect to 𝜏̂ is

𝜕V[𝑎𝑡 |𝜉𝑡]
𝜕𝜏̂

=
𝜏𝜀
𝜌2

[
−2 1

𝜏3
(𝜌 − 𝜗)2
1 − 𝜗2 + 1

𝜏2
−2(𝜌 − 𝜗)(1 − 𝜗2) + (𝜌 − 𝜗)22𝜗

(1 − 𝜗2)2
𝜕𝜗

𝜕𝜏̂

]
= − 𝜏𝜀

𝜌3
2(𝜌 − 𝜗)

(1 − 𝜗2)3𝜏3

(
(𝜌 − 𝜗)𝜌(1 − 𝜗2)2 − (1 − 𝜌𝜗)𝜗2𝜏

)
= − 𝜏𝜀

𝜌3
2(𝜌 − 𝜗)

(1 − 𝜗2)3𝜏3 (𝜌 − 𝜗)2(1 − 𝜌𝜗3) < 0.

Therefore, V[𝑎𝑡 |𝜉𝑡] is increasing in 𝛼.

Finally, the volatility of the aggregate outcome driven by the fundamental is given by

V[𝑎𝑡 |𝜀𝑡] =
(
1 − 𝜗

𝜌

)2 1 + 𝜌𝜗

(1 − 𝜌𝜗)(1 − 𝜌 − 𝜗 + 𝜗𝜌)(1 + 𝜌 + 𝜗 + 𝜗𝜌)

The derivative of V[𝑎𝑡 |𝜀𝑡] with respect to 𝜗 is

𝜕V[𝑎𝑡 |𝜀𝑡]
𝜕𝜗

= − 2𝜌2(1 − 𝜌2)2(𝜌 − 𝜗)(1 − 𝜌𝜗3)
𝜌4(1 − 𝜌𝜗)2(1 − 𝜌2)2(1 − 𝜗2)2 < 0.

Since 𝜗 is increasing in 𝛼, V[𝑎𝑡 |𝜀𝑡] is decreasing in 𝛼.

A.13 Proof of Lemma 4.1

Without informational frictions, guess that 𝑦𝑡 is proportional to 𝑟𝑡 . The consumption dynamics can be written as

𝑐𝑔𝑡 = −(1 − 𝑚𝑔)
∞∑
𝑘=0

(1 − 𝑚𝑔)𝑘E𝑡[𝑟𝑡+𝑘] + 𝑚𝑔𝜙𝑔

∞∑
𝑘=0

(1 − 𝑚𝑔)𝑘E𝑡[𝑦𝑡+𝑘]
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= − 1 − 𝑚𝑔

1 − (1 − 𝑚𝑔)𝜌 𝑟𝑡 +
𝑚𝑔𝜙𝑔

1 − (1 − 𝑚𝑔)𝜌 𝑦𝑡 .

Since 𝑦𝑡 = 𝜋1𝑐1𝑡 + 𝜋2𝑐2𝑡 , it follows that[
𝑐1𝑡

𝑐2𝑡

]
=

[− 1−𝑚1
1−(1−𝑚1)𝜌

− 1−𝑚2
1−(1−𝑚2)𝜌

]
𝑟𝑡 +

[ 𝑚1𝜙1𝜋1
1−(1−𝑚1)𝜌

𝑚1𝜙1𝜋2
1−(1−𝑚1)𝜌

𝑚2𝜙2𝜋1
1−(1−𝑚2)𝜌

𝑚2𝜙2𝜋2
1−(1−𝑚2)𝜌

] [
𝑐1𝑡

𝑐2𝑡

]
.

Inverting the matrix leads to the desired result.

A.14 Proof of Proposition 4.3

The proof follows from Proposition 10 in Angeletos and Huo (2021).

A.15 Proof of Proposition 4.4

The output process can be written as

𝑦𝑡 =
∑
𝑔

𝜋𝑔

(
−(1 − 𝑚𝑔)

∞∑
𝑘=0

(1 − 𝑚𝑔)𝑘E𝑡[𝑟𝑡+𝑘] + 𝑚𝑔𝜙𝑔

∞∑
𝑘=0

(1 − 𝑚𝑔)𝑘E𝑡[𝑦𝑡+𝑘]
)

= −
∑
𝑔

𝜋𝑔(1 − 𝑚𝑔)
1 − (1 − 𝑚𝑔)𝜌E𝑡[𝑟𝑡] +

∑
𝑔

𝜋𝑔𝑚𝑔𝜙𝑔E𝑡

[
1

1 − (1 − 𝑚𝑔)𝐿−1 𝑦𝑡

]
,

where we have used the assumption of common information structure. Denote policy function as 𝑦𝑡 = ℎ(𝐿)𝑟𝑡 . The average
forecasts are

E𝑡[𝑟𝑡] =
(
1 − 𝜆

𝜌

)
1

1 − 𝜆𝐿
1

1 − 𝜌𝐿
𝜂𝑡

E1𝑡

[
1

1 − (1 − 𝑚𝑔)𝐿−1 𝑦𝑡

]
=

(
ℎ(𝐿)𝐿2

(1 − 𝜌𝐿)(𝐿 − 𝜆)(𝐿 − (1 − 𝑚𝑔)) −
ℎ(𝜆)𝜆2

(1 − 𝜌𝜆)(𝐿 − 𝜆)(𝜆 − (1 − 𝑚𝑔))

− ℎ(1 − 𝑚𝑔)(1 − 𝑚𝑔)2
(1 − 𝜌(1 − 𝑚𝑔))(1 − 𝑚𝑔 − 𝜆)(𝐿 − (1 − 𝑚𝑔))

)
𝜏𝜆
𝜌

1 − 𝜌𝐿
1 − 𝜆𝐿

1
1 − 𝜌𝐿

𝜂𝑡 .

The equilibrium condition requires that

ℎ(𝐿) = −
∑
𝑔

𝜋𝑔(1 − 𝑚𝑔)
1 − (1 − 𝑚𝑔)𝜌

(
1 − 𝜆

𝜌

)
1

1 − 𝜆𝐿
+

∑
𝑔

𝜋𝑔𝑚𝑔𝜙𝑔

(
ℎ(𝐿)𝐿2

(1 − 𝜌𝐿)(𝐿 − 𝜆)(𝐿 − (1 − 𝑚𝑔)) −
ℎ(𝜆)𝜆2

(1 − 𝜌𝜆)(𝐿 − 𝜆)(𝜆 − (1 − 𝑚𝑔))

− ℎ(1 − 𝑚𝑔)(1 − 𝑚𝑔)2
(1 − 𝜌(1 − 𝑚𝑔))(1 − 𝑚𝑔 − 𝜆)(𝐿 − (1 − 𝑚𝑔))

)
𝜏𝜆
𝜌

1
1 − 𝜆𝐿

.

The endogenous persistence 𝜗 is the inverse of the outside root of the following equation

𝐶(𝐿) =1 − 𝜏𝜆
𝜌

∑
𝑔

𝜋𝑔𝑚𝑔𝜙𝑔
𝐿

(𝐿 − 𝜆)1 − 𝜆𝐿)(1 − (1 − 𝑚𝑔)𝐿−1) ,
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where the numerator is proportional to

𝑇(𝐿) =
∑
𝑔

𝜋𝑔
𝑚𝑔𝜙𝑔

1 − (1 − 𝑚𝑔)𝐿−1 − (1 − 𝜌𝐿)(𝐿 − 𝜌) + 𝜏𝐿
𝜏𝐿

.

The inside roots of 𝑇(𝐿) can be removed by chosen ℎ(𝜆) and ℎ(1 − 𝑚𝑔) properly. This leads to that

𝑦𝑡 =
(
1 − 𝜗

𝜌

)
1

1 − 𝜗𝐿
𝑦∗𝑡 .

Rearranging 𝑇(𝐿), we have

𝑇(𝐿) =
𝜏𝐿2

(
𝜋1𝑚1𝜙1(𝐿 − (1 − 𝑚2)) + 𝜋2𝑚2𝜙2(𝐿 − (1 − 𝑚1))

)
− ((1 − 𝜌𝐿)(𝐿 − 𝜌) + 𝜏𝐿)(𝐿 − (1 − 𝑚1))(𝐿 − (1 − 𝑚2))

(𝐿 − (1 − 𝑚1))(𝐿 − (1 − 𝑚2))𝐿
Let 𝐷(𝐿) denote the numerator of 𝑇(𝐿). Recall that 𝜋1𝜙1 + 𝜋2𝜙2 = 1, it follows that

𝜕𝐷(𝐿)
𝜕𝜙1

= −𝑚1𝜋1(m1 −m2)𝜏𝐿2.

Also note that

𝐷(𝜆) = 𝜏

𝜆2

(
𝜋1𝑚1𝜙1(𝜆−1 − (1 − 𝑚2)) + 𝜋2𝑚2𝜙2(𝜆−1 − (1 − 𝑚1))

)
> 0

𝐷(1) = −m1m2(1 − 𝜌)2 < 0.

Therefore, 𝜗 ∈ (𝜆, 1) and 𝐷(𝑧) is decreasing in the neighborhood of 𝜗−1. When m1 > m2, 𝜕𝐷(𝐿)
𝜕𝜙1

|𝐿=𝜗−1 < 0. It follows that 𝜗 is
increasing in 𝜙1.

Notice that when 𝑚1 = 𝑚2 = 𝑚, 𝑇(𝐿) becomes

𝑇(𝐿) = 𝑚
1 − (1 − 𝑚)𝐿−1 − (1 − 𝜌𝐿)(𝐿 − 𝜌) + 𝜏𝐿

𝜏𝐿
.

Therefore, 𝜙𝑔 is irrelevant in determining 𝜗.

A.16 Proof of Proposition 4.5

Due to that 𝜙2 = 0, the consumption dynamics for the low MPC group is given by

𝑐2,𝑡 = −(1 − 𝑚2)
∞∑
𝑘=0

(1 − 𝑚2)𝑘E2,𝑡[𝑟𝑡+𝑘] = − 1 − 𝑚2
1 − (1 − 𝑚2)𝜌E2,𝑡[𝑟𝑡].

That is, the consumption dynamics is proportional to the first-order expectation of 𝑟𝑡 :

𝑐2𝑡 =
(
1 − 𝜆2

𝜌

)
1

1 − 𝜆2𝐿

(
− 1 − 𝑚2

1 − (1 − 𝑚2)𝜌 𝑟𝑡
)

=
(
1 − 𝜆2

𝜌

)
1

1 − 𝜆2𝐿
𝑐∗2𝑡
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= 𝑐∗2𝑡 −
𝜆2
𝜌

1
1 − 𝜆2𝐿

𝑐∗2𝜂𝑡 .

Turn to consumers in group 1. Their problem can be written as

𝑐1𝑡 = − 1 − 𝑚1
1 − (1 − 𝑚1)𝜌E1𝑡[𝑟𝑡] + 𝑚1𝜙1

∞∑
𝑘=0

(1 − 𝑚1)𝑘𝜋2E1𝑡[𝑐2,𝑡+𝑘] + 𝑚1𝜙1

∞∑
𝑘=0

(1 − 𝑚1)𝑘𝜋1E1𝑡[𝑐1,𝑡+𝑘]

=
1

1 − (1 − 𝑚1)𝜌
(−(1 − 𝑚1) + 𝑚1𝜙1𝜋2𝑐∗2

)
E1𝑡[𝑟𝑡] − 𝑚1𝜙1𝜋2𝑐∗2

𝜆2
𝜌

1
1 − (1 − 𝑚1)𝜆2

E1𝑡

[
1

1 − 𝜆2𝐿
𝜂𝑡

]
+ E1𝑡

[
𝑚1𝜙1𝜋1

1 − (1 − 𝑚1)𝐿−1 𝑐1𝑡

]
.

(A.8)

Denote individual policy function as 𝑐𝑖,1,𝑡 = ℎ(𝐿)𝑥𝑖 ,1,𝑡 . The average forecasts are

E1𝑡[𝑟𝑡] =
(
1 − 𝜆1

𝜌

)
1

1 − 𝜆1𝐿
1

1 − 𝜌𝐿
𝜂𝑡

E1𝑡

[
1

1 − 𝜆2𝐿
𝜂𝑡

]
=

(
1 − 𝜆1

𝜌

)
1 − 𝜌𝜆1

1 − 𝜆2𝜆1

1
1 − 𝜆1𝐿

1
1 − 𝜆2𝐿

𝜂𝑡

E1𝑡

[
1

1 − (1 − 𝑚1)𝐿−1 𝑐1𝑡

]
=

(
ℎ(𝐿)𝐿2

(1 − 𝜌𝐿)(𝐿 − 𝜆1)(𝐿 − (1 − 𝑚1)) −
ℎ(𝜆1)𝜆2

1
(1 − 𝜌𝜆1)(𝐿 − 𝜆1)(𝜆1 − (1 − 𝑚1))

− ℎ(1 − 𝑚1)(1 − 𝑚1)2
(1 − 𝜌(1 − 𝑚1))(1 − 𝑚1 − 𝜆)(𝐿 − (1 − 𝑚1))

)
𝜏1𝜆1
𝜌

1 − 𝜌𝐿
1 − 𝜆1𝐿

1
1 − 𝜌𝐿

𝜂𝑡 .

Notice that in the equation (A.8), the first two terms are exogenous and require only first-order expectation, and only the
last term involves higher-order expectations. By Theorem 1 and Lemma 3.2, the endogenous persistence is the inverse of the
outside root of the following equation

𝐶(𝐿) =
[
𝐿

1−𝜌 𝜏
− 1

2
1

] [
1

1−𝜌𝐿
𝜏
− 1

2
1

]
− 𝐿
𝐿 − 𝜌

1
1 − 𝜌𝐿

𝑚1𝜙1𝜋1

1 − (1 − 𝑚1)𝐿−1

=
𝐿 + 𝜏−1

1 (1 − 𝜌𝐿)(𝐿 − 𝜌) − 𝐿 𝑚1𝜙1𝜋1
1−(1−𝑚1)𝐿−1

(1 − 𝜌𝐿)(𝐿 − 𝜌) ,

where the numerator is proportional to

𝑇(𝐿) = 𝑚1𝜙1𝜋1

1 − (1 − 𝑚1)𝐿−1 − (1 − 𝜌𝐿)(𝐿 − 𝜌) + 𝜏1𝐿
𝜏1𝐿

.

The two inside roots can be removed by chosen ℎ(𝜆1) and ℎ(1 − 𝑚1) accordingly. This leads to that

𝑐1𝑡 − 𝑐∗1𝑡 = −𝑐∗1
𝜗
𝜌

1
1 − 𝜗𝐿

𝜂𝑡 − 𝑚1𝜙1𝜋2
1 − 𝜗

𝜆2

𝑇(𝜆−1
2 )(1 − (1 − 𝑚1)𝜆2)

1
1 − 𝜗𝐿

𝑐∗2
𝜆2
𝜌

1
1 − 𝜆2𝐿

𝜂𝑡 .

A.17 Proof of Proposition 4.6

Note that 𝑥1
𝑚(𝑖 ,𝑡),𝑡 = 𝑎𝑖 + 𝜀𝑚(𝑖 ,𝑡)𝑡 , the signal process can be equivalently rewritten as

𝑥1
𝑖𝑡 = 𝜅𝑚(𝑖,𝑡) + 𝜀𝑖𝑡 , 𝑥̂2

𝑖𝑡 = 𝑥2
𝑖𝑡 − 𝜅𝑖 = 𝜉𝑡 + 𝜀𝑚(𝑖,𝑡),𝑡 + 𝑢𝑖𝑡 , 𝜉𝑡 = 𝜌𝜉𝑡−1 + 𝜂𝑡 .
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Denote the policy rule using this transformed signals as

𝑎𝑖𝑡 = 𝑔0𝜅𝑖 + 𝑔1(𝐿)𝑥1
𝑖𝑡 + 𝑔2(𝐿)𝑥̂2

𝑖𝑡 .

In the end, the policy rule using the original signals can be found by

ℎ𝑎 = 𝑔0 − 𝑔2(1), ℎ1(𝐿) = 𝑔1(𝐿), ℎ2(𝐿) = 𝑔2(𝐿).

Note that the two signals are independent of each other, and we can find the fundamental representation for each of them
separately. The fundamental representation for 𝑥̂2

𝑖𝑡 is

𝐵(𝐿) = 1 − 𝜆𝐿
1 − 𝜌𝐿

, 𝑉 =
𝜌(𝜎2

𝜀 + 𝜎2
𝑢)

𝜆𝜎2
𝜂

,

where

𝜆 =
1
2

𝜌 + 1
𝜌
+ 𝜎2

𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
−

√√√(
1
𝜌
+ 𝜌 + 𝜎2

𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)

)2

− 4

 . (A.9)

Denote 𝑗 ≡ 𝑚(𝑖 , 𝑡) as the index of agent 𝑖’s current match. The prediction of 𝑎 𝑗𝑡 is

E𝑖𝑡[𝑎 𝑗𝑡] = E𝑖𝑡[𝑔0𝜅 𝑗 + 𝑔1(𝐿)(𝜅𝑚(𝑗 ,𝑡) + 𝜀𝑗𝑡) + 𝑔2(𝐿)(𝑢𝑗𝑡 + 𝜀𝑚(𝑗,𝑡),𝑡 + 𝜉𝑡)],

where

E𝑖𝑡[𝜅 𝑗] = 𝜎2
𝜅

𝜎2
𝜅 + 𝜎2

𝜀

𝑥1
𝑖𝑡 , E𝑖𝑡[𝑢𝑗𝑡] = 0, E𝑖𝑡[𝜀𝑗𝑡] =

𝜆𝜎2
𝜀𝜎

2
𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
1 − 𝜌𝐿
1 − 𝜆𝐿

𝑥̂2
𝑖𝑡 , E𝑖𝑡[𝑔2(𝐿)𝜉𝑡] =

(
𝐿𝑔2(𝐿)
𝐿 − 𝜆

− 𝜆(1 − 𝜌𝐿)𝑔2(𝜆))
(1 − 𝜌𝜆)(𝐿 − 𝜆)

)
𝑉−1

1 − 𝜆𝐿
𝑥̂2
𝑖𝑡 ,

E𝑖𝑡[𝜅𝑚(𝑗,𝜏),𝜏] = 𝜅𝑖 , E𝑖𝑡[𝜀𝑚(𝑗,𝜏),𝜏] = 𝜎2
𝜀

𝜎2
𝜅 + 𝜎2

𝜀

𝑥1
𝑖𝑡 if 𝜏 = 𝑡, otherwise 0.

The best response requires that

𝑔0𝜅𝑖 + 𝑔1(𝐿)𝑥1
𝑖𝑡 + 𝑔2(𝐿)𝑥̂2

𝑖𝑡

=𝜅𝑖 + 𝛼

[
𝑔0

𝜎2
𝜅

𝜎2
𝜅 + 𝜎2

𝜀

𝑥1
𝑖𝑡 + 𝑔1(0)𝜅𝑖 + 𝑔1(0)

𝜆𝜎2
𝜀𝜎

2
𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
1 − 𝜌𝐿
1 − 𝜆𝐿

𝑥̂2
𝑖𝑡 +

(
𝐿𝑔2(𝐿)
𝐿 − 𝜆

− 𝜆(1 − 𝜌𝐿)𝑔2(𝜆))
(1 − 𝜌𝜆)(𝐿 − 𝜆)

)
𝑉−1

1 − 𝜆𝐿
𝑥̂2
𝑖𝑡 + 𝑔2(0) 𝜎2

𝜀

𝜎2
𝜅 + 𝜎2

𝜀

𝑥1
𝑖𝑡

]
,

which leads to

𝑔0 = 1 + 𝛼𝑔1(0), 𝑔1(0) = 𝛼𝑔0
𝜎2
𝜅

𝜎2
𝜅 + 𝜎2

𝜀

+ 𝛼𝑔2(0) 𝜎2
𝜀

𝜎2
𝜅 + 𝜎2

𝜀

,

𝑔2(𝐿) = 𝛼𝑔1(0)
𝜆𝜎2

𝜀𝜎
2
𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
1 − 𝜌𝐿
1 − 𝜆𝐿

+ 𝛼

(
𝐿ℎ2(𝐿)
𝐿 − 𝜆

− 𝜆(1 − 𝜌𝐿)𝑔2(𝜆))
(1 − 𝜌𝜆)(𝐿 − 𝜆)

)
𝑉−1

1 − 𝜆𝐿
.

The third equation can be written as

−(𝐿 − 𝜗)
(
𝐿 − 1

𝜗

)
𝑔2(𝐿) = 𝛼𝑔1(0)

𝜎2
𝜀𝜎

2
𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
(1 − 𝜌𝐿)(𝐿 − 𝜆) − 𝛼

𝑉−1(1 − 𝜌𝐿)𝑔2(𝜆)
(1 − 𝜌𝜆) ,
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where

𝜗 =
1
2


1
𝜌
+ 𝜌 + (1 − 𝛼)𝜎2

𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
−

√√√(
1
𝜌
+ 𝜌 + (1 − 𝛼)𝜎2

𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)

)2

− 4

 .
Use 𝑔2(𝜆) to removes the inside root 𝜗, we have

𝑔1(𝐿) = 𝑔1(0) = 𝛼

1 − 𝛼2 + 𝜎2
𝜀

𝜎2
𝜅

(
1 − 𝛼2 𝜗

𝜌

𝜎2
𝜀 𝜎

2
𝜂

𝜎2
𝜀+𝜎2

𝑢

) , 𝑔0 = 1 + 𝛼𝑔1(0), 𝑔2(𝐿) =
𝛼𝜗𝑔1(0)𝜎2

𝜀𝜎
2
𝜂

𝜌(𝜎2
𝜀 + 𝜎2

𝑢)
1 − 𝜌𝐿
1 − 𝜗𝐿

By aggregation, the aggregate outcome 𝑎𝑡 is

𝑎𝑡 = 𝑔2(𝐿)𝜉𝑡 = 𝜑

1 − 𝜗𝐿
𝜂𝑡 , where 𝜑 =

𝛼2𝜗
𝜌

𝜎2
𝜂𝜎

2
𝜀

𝜎2
𝜀 + 𝜎2

𝑢

(
1 − 𝛼2 + 𝜎2

𝜀

𝜎2
𝜅

(
1 − 𝛼2 𝜗

𝜌

𝜎2
𝜂𝜎

2
𝜀

𝜎2
𝜀 + 𝜎2

𝑢

))−1

.

A.18 Proof of Proposition 4.7

First consider the case with rational expectations. By construction, rational expectations imply that 𝐾BGMS = 0. The forecast
about future aggregate outcome is given by

E𝑡[𝑎𝑡] = 𝜑
𝜌 − 𝜆

𝜌

1 − 𝜌𝜆

1 − 𝜗𝜆
1

(1 − 𝜆𝐿)(1 − 𝜗𝐿)𝜂𝑡 ,

where 𝜆 is defined in equation (A.9).

Denote 𝛿 ≡ 𝜌−𝜆
𝜌

1−𝜌𝜆
1−𝜗𝜆 . Note that 𝜗 < 𝜌 when 𝛼 < 1, which implies that 𝛿 ∈ (0, 1) when 𝛼 < 1. The aggregate forecast error

and the aggregate forecast revision are

𝑎𝑡+1 − E𝑡[𝑎𝑡+1] = 𝑎𝑡+1 − 𝜗E𝑡[𝑎𝑡] = 𝜑𝜂𝑡+1 + 𝜗𝜑
1

1 − 𝜗𝐿

(
1 − 𝛿

1 − 𝜆𝐿

)
𝜂𝑡 ,

E𝑡[𝑎𝑡+1] − E𝑡−1[𝑎𝑡+1] = 𝜗E𝑡[𝑎𝑡] − 𝜗2E𝑡−1[𝑎𝑡−1] = 𝜑𝜗𝛿
1

1 − 𝜆𝐿
𝜂𝑡 .

To compute 𝐾CG, we need to compute the variance of the forecast revision and the covariance between forecast error and the
forecast revision, which are

V
(
E𝑡[𝑎𝑡+1] − E𝑡−1[𝑎𝑡+1]

)
=

(
𝜑𝜗

𝜌 − 𝜆

𝜌

1 − 𝜌𝜆

1 − 𝜗𝜆

)2 1
1 − 𝜆2 ,

COV
(
𝑎𝑡+1 − E𝑡[𝑎𝑡+1],E𝑡[𝑎𝑡+1] − E𝑡−1[𝑎𝑡+1]

)
=𝜑2𝜗2COV

(
1

1 − 𝜗𝐿

(
1 − 𝛿

1 − 𝜆𝐿

)
𝜂𝑡 , 𝛿

1
1 − 𝜆𝐿

𝜂𝑡

)
.

This leads to

𝐾CG =
COV

(
𝑎𝑡+1 − E𝑡[𝑎𝑡+1],E𝑡[𝑎𝑡+1] − E𝑡−1[𝑎𝑡+1]

)
V

(
E𝑡[𝑎𝑡+1] − E𝑡−1[𝑎𝑡+1]

) = 𝜆
−𝜌(1 − 𝜆2)𝜗 + 1 + 𝜌2 − 2𝜌𝜆
(𝜌 − 𝜆)(1 − 𝜌𝜆)(1 − 𝜆𝜗)
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To show that 𝐾CG > 0, we use the property that 𝜗 < 𝜌, which leads to

𝐾CG > 𝜆
−𝜌(1 − 𝜆2)𝜌 + 1 + 𝜌2 − 2𝜌𝜆
(𝜌 − 𝜆)(1 − 𝜌𝜆)(1 − 𝜆𝜗) = 𝜆

(1 − 𝜌𝜆)2
(𝜌 − 𝜆)(1 − 𝜌𝜆)(1 − 𝜆𝜗) > 0.

To verify that 𝐾CG is monotonically decreasing in 𝛼, it is sufficient to show that

𝜕𝐾CG
𝜕𝜗

= − 𝜆

(1 − 𝜆𝜗)2 < 0,

and the desired result follows from the fact that 𝜗 is monotonically increasing in 𝛼.

Second, consider the case with heterogeneous prior. In this case, we have

𝑓1𝑎𝑖 + 𝑓2𝑎𝑚(𝑖,𝑡) + 𝑓3𝜉𝑡 = 𝑎𝑖 + 𝛼( 𝑓1𝑎𝑚(𝑖 ,𝑡) + 𝑓2(𝑎𝑖 + 𝜉𝑡) + 𝑓3𝜉𝑡).

By the method of undetermined coefficients, we have

𝑓1 = 1 + 𝛼 𝑓2 , 𝑓2 = 𝛼 𝑓1 , 𝑓3 = 𝛼( 𝑓2 + 𝑓3),

which leads to

𝑓1 =
1

1 − 𝛼2 , 𝑓2 =
𝛼

1 − 𝛼2 , 𝑓3 =
𝛼2

(1 − 𝛼)(1 − 𝛼2) .

The individual’s forecast about aggregate output is given by

E𝑖𝑡[𝑎𝑡] = ( 𝑓2 + 𝑓3)𝜉𝑡 = 𝑓3
𝛼
𝜉𝑡 .

Note that this forecast is not the rational forecast. The forecast error and forecast revision are

𝑎𝑡+1 − E𝑖𝑡[𝑎𝑡+1] = 𝑓3𝜉𝑡+1 − 𝜌
𝑓3
𝛼
𝜉𝑡 , E𝑖𝑡[𝑎𝑡+1] − E𝑖𝑡−1[𝑎𝑡+1] = 𝜌

𝑓3
𝛼
𝜉𝑡 − 𝜌2 𝑓3

𝛼
𝜉𝑡−1.

It is straightforward to show that

V(E𝑖𝑡[𝑎𝑡+1] − E𝑖𝑡−1[𝑎𝑡+1]) =
(
𝜌
𝑓3
𝛼

)2

, COV (𝑎𝑡+1 − E𝑖𝑡[𝑎𝑡+1],E𝑖𝑡[𝑎𝑡+1] − E𝑖 ,𝑡−1[𝑎𝑡+1]) = (𝜌 𝑓3)2 𝛼 − 1
𝛼2 .

In this case, the individual forecast and the average forecast are identical. Therefore,

𝐾CG = 𝐾BGMS = 𝛼 − 1.

A.19 Proof of Proposition 4.8

We proceed by a guess-and-verify approach. Suppose that the aggregate outcome 𝑎𝑡 in the equilibrium has a finite-state
representation. If this is the case, then there exists a state-space representation for an individual agent. Let θ𝑡 be the vector
of underlying states, and 𝑎𝑡 is related with θ𝑡 through a matrix A: 𝑎𝑡 = Aθ𝑡 . The signal is related to the underlying state via
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𝑥𝑖𝑡 = Hθ𝑡 + 𝑢𝑖𝑡 . The optimal forecast for the underlying state is

E𝑖𝑡[θ𝑡] = E𝑖 ,𝑡−1[θ𝑡] + K(𝑥𝑖𝑡 − HE𝑖 ,𝑡−1[θ𝑡]),

where K is the corresponding Kalman gain matrix. It follows that

E𝑖𝑡[𝑎𝑡] = E𝑖 ,𝑡−1[𝑎𝑡] + AK(𝑥𝑖𝑡 − HE𝑖 ,𝑡−1[θ𝑡]).

Now consider the diagnostic expectations

Ẽ𝑖𝑡[θ𝑡] = E𝑖,𝑡−1[θ𝑡] + (1 + 𝜇)K(𝑥𝑖𝑡 − HE𝑖,𝑡−1[θ𝑡]),

which implies that
AẼ𝑖𝑡[θ𝑡] = AE𝑖 ,𝑡−1[θ𝑡] + (1 + 𝜇)AK(𝑥𝑖𝑡 − HE𝑖,𝑡−1[θ𝑡]),

and

Ẽ𝑖𝑡[𝑎𝑡] = E𝑖,𝑡−1[𝑎𝑡] + (1 + 𝜇)AK(𝑥𝑖𝑡 − HE𝑖𝑡−1[θ𝑡]) = (1 + 𝜇)E𝑖𝑡[𝑎𝑡] − 𝜇E𝑖 ,𝑡−1[𝑎𝑡].

Let 𝑎𝑖𝑡 = ℎ(𝐿)𝑥𝑖𝑡 as the equilibrium policy rule. The forecasts about the aggregate outcome is then given by

E𝑖𝑡[𝑎𝑡] = 𝜆

𝜌𝜎2(1 − 𝜆𝐿)(𝐿 − 𝜆)
(
ℎ(𝐿)𝐿 − ℎ(𝜆)𝜆1 − 𝜌𝐿

1 − 𝜌𝜆

)
𝑥𝑖𝑡 , E𝑖𝑡[𝑎𝑡+1] = 𝜆

𝜌𝜎2(1 − 𝜆𝐿)(𝐿 − 𝜆)
(
ℎ(𝐿) − ℎ(𝜆)1 − 𝜌𝐿

1 − 𝜌𝜆

)
𝑥𝑖𝑡 ,

which leads to

Ẽ𝑖𝑡[𝜉𝑡] =
(
1 − 𝜆

𝜌

)
1 + 𝜇 − 𝜇𝜌𝐿

1 − 𝜆𝐿
𝑥𝑖𝑡 , Ẽ𝑖𝑡[𝑎𝑡] = 𝜆

𝜌𝜎2(1 − 𝜆𝐿)(𝐿 − 𝜆)
(
ℎ(𝐿)((1 + 𝜇)𝐿 − 𝜇𝐿) − ℎ(𝜆)((1 + 𝜇)𝜆 − 𝜇𝐿)1 − 𝜌𝐿

1 − 𝜌𝜆

)
𝑥𝑖𝑡 .

The best response can be written as

ℎ(𝐿)𝑥𝑖𝑡 = (1 − 𝛼)
[ (

1 − 𝜆
𝜌

)
1 + 𝜇 − 𝜇𝜌𝐿

1 − 𝜆𝐿
𝑥𝑖𝑡

]
+ 𝛼

[
𝜆

𝜌𝜎2(1 − 𝜆𝐿)(𝐿 − 𝜆)
(
ℎ(𝐿)𝐿 − ℎ(𝜆)((1 + 𝜇)𝜆 − 𝜇𝐿)1 − 𝜌𝐿

1 − 𝜌𝜆

)
𝑥𝑖𝑡

]
,

which leads to the following fixed-point problem(
(1 − 𝜆𝐿)(𝐿 − 𝜆) − 𝛼

𝜆

𝜌𝜎2 𝐿
)
ℎ(𝐿) = (1 − 𝛼)

(
1 − 𝜆

𝜌

)
(1 + 𝜇 − 𝜇𝜌𝐿)(𝐿 − 𝜆) − 𝛼

𝜆

𝜌𝜎2 ℎ(𝜆)((1 + 𝜇)𝜆 − 𝜇𝐿)1 − 𝜌𝐿
1 − 𝜌𝜆

The roots of
(
(1 − 𝜆𝐿)(𝐿 − 𝜆) − 𝛼 𝜆

𝜌𝜎2 𝐿
)
are 𝜗 and 𝜗−1, where 𝜗 is given by

𝜗 =
1
2


(

1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌𝜎2

)
−

√(
1
𝜌
+ 𝜌 + 1 − 𝛼

𝜌𝜎2

)2

− 4
 .

We choose ℎ(𝜆) to remove the inside root 𝜆. As a result, the equilibrium policy rule can be expressed as

ℎ(𝐿) =
(
1 − 𝜗

𝜌

)
𝜆(1 + 𝜇)

𝜆(1 + 𝜇) − 𝜇𝜗

1 − 𝜇𝜌𝜗
𝜆(1+𝜇)𝐿

1 − 𝜗𝐿
=

𝜆(1 + 𝜇)
𝜆(1 + 𝜇) − 𝜇𝜗

(
1 − 𝜇𝜌𝜗

𝜆(1 + 𝜇)𝐿
)
ℎ∗(𝐿).
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A.20 Proof of Proposition 5.1

Based on the single-agent solution in Huo and Pedroni (2020), for any 𝛼 ∈ (−1, 1), the aggregate outcome in the beauty-
contest game is the same as that in the following pure forecasting problem

𝑎𝑖𝑡 = E𝑖𝑡[𝜉𝑡],

with the modification that the precision of the private shocks is discounted by 1 − 𝛼. Therefore, it is sufficient to prove that
there does not exist a finite-state representation for the pure forecasting problem.

Suppose that the perceived law of motion of 𝑎𝑡 is

𝑎𝑡 = 𝜙(𝐿)𝜂𝑡 ≡ 𝑎(𝐿)
𝑏(𝐿)𝜂𝑡

where 𝑎(𝐿) and 𝑏(𝐿) are finite polynomials, 𝑏(𝐿) does not contain any inside root, and 𝑎(𝐿) and 𝑏(𝐿) do not contain any
common root.

Without loss of generality, assume that 𝜂𝑡 ∼ 𝒩(0, 1), 𝑢𝑖𝑡 ∼ 𝒩(0, 𝜎2
𝑢), and 𝜀𝑖𝑡 ∼ 𝒩(0, 𝜎2

𝜀 ). Given this perceived law of motion,
the signal process can be represented as

x𝑖𝑡 = M(𝐿)

𝜂̂𝑡

𝑢̂𝑖𝑡
𝜀̂𝑖𝑡

 , where M(𝐿) =
[

1 𝜎𝑢 0
𝑎(𝐿)
𝑏(𝐿) 0 𝜎𝜀

]
,

where 𝜂̂𝑡 , 𝜀̂𝑖𝑡 , 𝑢̂𝑖𝑡 are normalized shocks with unit standard deviation.

Step 1. Factorization. We first construct the spectral factorization of the signal process.

M(𝑧)M′(𝑧−1)

=

[
1 + 𝜎2

𝑢
𝑎(𝑧−1)
𝑏(𝑧−1)

𝑎(𝑧)
𝑏(𝑧)

𝑎(𝑧)𝑎(𝑧−1)
𝑏(𝑧)𝑏(𝑧−1) + 𝜎2

𝜀

]
,

=

[
1 0
𝑎(𝑧)

(1+𝜎2
𝑢 )𝑏(𝑧) 1

] [
1 + 𝜎2

𝑢 0
0 𝑎(𝑧)𝑎(𝑧−1)

𝑏(𝑧)𝑏(𝑧−1)
𝜎2
𝑢

1+𝜎2
𝑢
+ 𝜎2

𝜀

] [
1 𝑎(𝑧−1)

(1+𝜎2
𝑢 )𝑏(𝑧−1)

0 1

]
,

=

[
1 0
𝑎(𝑧)

(1+𝜎2
𝑢 )𝑏(𝑧) 1

] [
1 + 𝜎2

𝑢 0
0 𝜎2

𝑢 𝑎(𝑧)𝑎(𝑧−1)+𝜎2
𝜀 (1+𝜎2

𝑢 )𝑏(𝑧)𝑏(𝑧−1)
(1+𝜎2

𝑢 )𝑏(𝑧)𝑏(𝑧−1)

] [
1 𝑎(𝑧−1)

(1+𝜎2
𝑢 )𝑏(𝑧−1)

0 1

]
,

=

[
1 0
𝑎(𝑧)

(1+𝜎2
𝑢 )𝑏(𝑧) 1

] [
1 + 𝜎2

𝑢 0
0 𝑑2𝜆(𝑧)𝜆(𝑧−1)

𝑏(𝑧)𝑏(𝑧−1)

] [
1 𝑎(𝑧−1)

(1+𝜎2
𝑢 )𝑏(𝑧−1)

0 1

]
,

where we can choose 𝜆(𝑧) so that all the roots of 𝜆(𝑧) are outside the unit circle, the roots of 𝜆(𝑧−1) are inside the unit circle,
and 𝑑 is such that

𝑑2𝜆(𝑧)𝜆(𝑧−1) = 𝜎2
𝑢𝑎(𝑧)𝑎(𝑧−1) + 𝜎2

𝜀 (1 + 𝜎2
𝑢)𝑏(𝑧)𝑏(𝑧−1).
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Continuing the factorization,

M(𝑧)M′(𝑧−1) =

[
1 0
𝑎(𝑧)

(1+𝜎2
𝑢 )𝑏(𝑧) 1

] [ √
1 + 𝜎2

𝑢 0
0 𝑑𝜆(𝑧)

𝑏(𝑧)

] [ √
1 + 𝜎2

𝑢 0
0 𝑑𝜆(𝑧−1)

𝑏(𝑧−1)

] [
1 𝑎(𝑧−1)

(1+𝜎2
𝑢 )𝑏(𝑧−1)

0 1

]
,

=


√

1 + 𝜎2
𝑢 0

𝑎(𝑧)√
1+𝜎2

𝑢 𝑏(𝑧)
𝑑𝜆(𝑧)
𝑏(𝑧)




√
1 + 𝜎2

𝑢
𝑎(𝑧−1)√

1+𝜎2
𝑢 𝑏(𝑧−1)

0 𝑑𝜆(𝑧−1)
𝑏(𝑧−1)

 ,
≡ 𝚪(𝑧)𝚪′(𝑧−1).

Since that 𝑏(𝑧) does not have inside roots, 𝚪(𝑧) is analytic inside the unit circle and det 𝚪(𝑧) = 𝑑
√

1 + 𝜎2
𝑢
𝜆(𝑧)
𝑏(𝑧) assures the rank

of 𝚪(𝑧) is 2 everywhere inside the unit circle. Therefore, 𝚪(𝑧) is a fundamental representation of the signal process M(𝑧).

Step 2. Inference. In this proof, we consider a more general process for the fundamental than that in the main text.
Suppose that 𝜉𝑡 follows an AR (𝑝) process

𝜉𝑡 =
1
𝑝(𝐿)𝜂𝑡 ,

where 𝑝(𝐿) does not contain any inside root and its order is 𝑝. By the Wiener-Hopf prediction formula, the average optimal
forecast about 𝜉𝑡 is given by

E𝑡

[
1
𝑝(𝐿)𝜂𝑡

]
=

[ [
1
𝑝(𝐿) 0 0

]
M(𝐿−1)𝚪(𝐿−1)−1

]
+
𝚪(𝐿−1)M(𝐿)

[
1 0 0

]
𝜂𝑡 ,

=


[

1
𝑝(𝐿) 0 0

] 
1 𝑎(𝐿−1)

𝑏(𝐿−1)
𝜎𝑢 0
0 𝜎𝜀




√
1 + 𝜎2

𝑢
𝑎(𝐿−1)√

1+𝜎2
𝑢 𝑏(𝐿−1)

0 𝑑𝜆(𝐿−1)
𝑏(𝐿−1)


−1+


√

1 + 𝜎2
𝑢 0

𝑎(𝐿)√
1+𝜎2

𝑢 𝑏(𝐿)
𝑑𝜆(𝐿)
𝑏(𝐿)


−1 [

1
𝑎(𝐿)
𝑏(𝐿)

]
𝜂𝑡 ,

=
[

1√
1+𝜎2

𝑢 𝑝(𝐿)

[
𝜎2
𝑢 𝑎(𝐿−1)

(1+𝜎2
𝑢 )𝑑𝜆(𝐿−1)𝑝(𝐿)

]
+

] 
1√

1+𝜎2
𝑢

𝜎2
𝑢 𝑎(𝐿)

(1+𝜎2
𝑢 )𝑑𝜆(𝐿)

 𝜂𝑡 ,
where the last line follows from the fact that 𝑝(𝐿) does not contain any inside root.

Next, we show that the part involving the annihilation operator satisfies[
𝜎2
𝑢𝑎(𝐿−1)

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝑝(𝐿)

]
+
=
𝑞(𝐿)
𝑝(𝐿) , (A.10)

where 𝑞(𝐿) is a polynomial in 𝐿 with the properties that: (1) the order of 𝑞(𝐿) is less than or equal to 𝑝 − 1; and (2) 𝑞(𝐿) does
not have any common roots with 𝑝(𝐿).³²
Let 𝑛𝑎 and 𝑛𝜆 denote the order of 𝑎(𝐿) and 𝜆(𝐿), respectively. If 𝑛𝑎 ≥ 𝑛𝜆

𝜎2
𝑢𝑎(𝐿−1)

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝑝(𝐿) =

𝜎2
𝑢𝑎(𝐿−1)𝐿𝑛𝑎

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝐿𝑛𝑎 𝑝(𝐿) =

𝜎2
𝑢 𝑎̃(𝐿)

(1 + 𝜎2
𝑢)𝑑𝜆̃(𝐿)𝐿𝑛𝑎−𝑛𝜆𝑝(𝐿)

,

³²The second property is not necessary for the proof, but we include it here for completeness.
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and otherwise

𝜎2
𝑢𝑎(𝐿−1)

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝑝(𝐿) =

𝜎2
𝑢𝑎(𝐿−1)𝐿𝑛𝜆

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝐿𝑛𝜆𝑝(𝐿) =

𝜎2
𝑢 𝑎̃(𝐿)𝐿𝑛𝜆−𝑛𝑎

(1 + 𝜎2
𝑢)𝑑𝜆̃(𝐿)𝑝(𝐿)

,

where 𝑎̃(𝐿) ≡ 𝑎(𝐿−1)𝐿𝑛𝑎 and 𝜆̃(𝐿) ≡ 𝜆(𝐿−1)𝐿𝑛𝜆 . The order of 𝑎̃(𝐿) is at most 𝑛𝑎 . The order of 𝜆̃(𝐿) is 𝑛𝜆 because there needs
to be a constant term in 𝜆(𝐿). Otherwise, 𝜆(𝐿) would contain zero as an inside root, which contradicts the fact that 𝜆(𝐿)
contains only outside roots. Therefore, in both cases, the order of the denominator of 𝜎2

𝑢 𝑎(𝐿−1)
(1+𝜎2

𝑢 )𝑑𝜆(𝐿−1)𝑝(𝐿) is greater than that of
the numerator.

Denote 𝜆̃(𝐿) =
∏𝐼

𝑖=1(𝑧 − 𝛿𝑖)𝜏𝑖 and 𝑝(𝐿) =
∏𝐽

𝑖=1(𝑧 − 𝑏 𝑗)𝜅𝑖 where
∑𝐼
𝑖=1 𝜏𝑖 = 𝑛𝜆 and

∑𝐽
𝑖=1 𝜅𝑖 = 𝑝. By the partial fraction

decomposition, there exist constants {𝑐𝑖𝑘}, {𝑑 𝑗𝑘}, and {𝑒𝑖} such that³³

𝜎2
𝑢𝑎(𝐿−1)

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝑝(𝐿) =


∑𝐼
𝑖=1

∑𝜏𝑖
𝑘=1

𝑐𝑖𝑘
(𝑧−𝛿𝑖 )𝑘 +

∑𝐽
𝑖=1

∑𝜅𝑖
𝑘=1

𝑑𝑖𝑘
(𝑧−𝑏𝑖 )𝑘 +

∑𝑛𝑎−𝑛𝜆
𝑖=1

𝑒𝑖
𝑧 𝑖 if 𝑛𝑎 ≥ 𝑛𝜆 ,∑𝐼

𝑖=1
∑𝜏𝑖
𝑘=1

𝑐𝑖𝑘
(𝑧−𝛿𝑖 )𝑘 +

∑𝐽
𝑖=1

∑𝜅𝑖
𝑘=1

𝑑𝑖𝑘
(𝑧−𝑏𝑖 )𝑘 otherwise.

(A.11)

By construction, all the roots {𝛿𝑖} are inside the unit circle and all the roots {𝑏𝑖} are outside the unit circle. As a result,[
𝜎2
𝑢𝑎(𝐿−1)

(1 + 𝜎2
𝑢)𝑑𝜆(𝐿−1)𝑝(𝐿)

]
+
=

𝐽∑
𝑗=1

𝜅 𝑗∑
𝑘=1

𝑑 𝑗𝑘
(𝑧 − 𝑏 𝑗)𝑘 =

∑𝐽
𝑗=1

∑𝜅 𝑗
𝑘=1 𝑑 𝑗𝑘(𝑧 − 𝑏 𝑗)𝜅 𝑗−𝑘

∏
ℎ≠𝑗,1≤ℎ≤𝐽(𝑧 − 𝑏ℎ)𝜅ℎ∏𝐽

𝑗=1(𝑧 − 𝑏 𝑗)𝜅 𝑗
,

where 𝑞(𝐿) corresponds to the numerator of the last term. It follows that the order of the numerator is at most 𝑝 − 1. In
addition, the numerator 𝑞(𝐿) cannot contain any common roots with 𝑝(𝐿). Otherwise, it implies that 𝑑 𝑗𝜅 𝑗 = 0 for some 𝑗,
which makes the decomposition (A.11) invalid.

Step 3. Verifying Equilibrium Condition. Using condition (A.10), it follows that the implied actual law of motion
𝜓(𝐿) = E𝑡[𝜉𝑡] is

𝜓(𝐿) =
[

1√
1+𝜎2

𝑢 𝑝(𝐿)

[
𝜎2
𝑢 𝑎(𝐿−1)

(1+𝜎2
𝑢 )𝑑𝜆(𝐿−1)𝑝(𝐿)

]
+

] 
1√

1+𝜎2
𝑢

𝜎2
𝑢 𝑎(𝐿)

(1+𝜎2
𝑢 )𝑑𝜆(𝐿)

 =
𝑑𝜆(𝐿) + 𝜎2

𝑢𝑞(𝐿)𝑎(𝐿)
𝑑(1 + 𝜎2

𝑢)𝑝(𝐿)𝜆(𝐿)
.

In equilibrium, the perceived law of motion and the actual law of motion of the aggregate outcome need to be consistent
with each other.

First, we consider the case that 𝑎(𝐿) is not a constant and has at least one root. To match with 𝜙(𝐿), the numerator of 𝜓(𝐿)
needs to have all the roots of 𝑎(𝐿), so 𝜆(𝐿) in the numerator can be decomposed as

𝜓(𝐿) =
(𝑑𝜆1(𝐿) + 𝜎2

𝑢𝑞(𝐿))𝑎(𝐿)
𝑑(1 + 𝜎2

𝑢)𝑝(𝐿)𝜆(𝐿)
,

where 𝜆1(𝐿) is a polynomial such that 𝜆(𝐿) = 𝜆1(𝐿)𝑎(𝐿). On the other hand, together with the definition of 𝜆(𝐿), 𝜆(𝐿) =

𝜆1(𝐿)𝑎(𝐿) implies that

𝑑2𝜆(𝐿)𝜆(𝐿−1) = 𝑑2𝜆1(𝐿)𝑎(𝐿)𝜆1(𝐿−1)𝑎(𝐿−1) = 𝜎2
𝑢𝑎(𝐿)𝑎(𝐿−1) + 𝜎2

𝜀 (1 + 𝜎2
𝑢)𝑏(𝐿)𝑏(𝐿−1).

It follows that 𝑏(𝐿)𝑏(𝐿−1) can be expressed as 𝜎2
𝜀 (1 + 𝜎2

𝑢)𝑏(𝐿)𝑏(𝐿−1) = 𝑎(𝐿)𝑎(𝐿−1)𝑏1(𝐿)𝑏1(𝐿−1), where 𝑏1(𝐿) is a polynomial.

³³These coefficients can be found by applying the Heaviside theorem.
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That is, 𝑏(𝐿)𝑏(𝐿−1) has to contain all the roots of 𝑎(𝐿)𝑎(𝐿−1). This is possible only if all the roots of 𝑎(𝐿) are reciprocals of
the roots of 𝑏(𝐿) as 𝑎(𝐿) and 𝑏(𝐿) do not contain any common root. Then, all the roots of 𝑎(𝐿) must be inside the unit circle
given that all the roots of 𝑏(𝐿) are outside the unit circle. It follows that 𝜆(𝐿) cannot have any common roots with 𝑎(𝐿) as all
the roots of 𝜆(𝐿) are outside the unit circle by construction. This is a contradiction. Therefore, the numerator of 𝜓(𝐿) cannot
have all of the roots of 𝑎(𝐿) to match with 𝜙(𝐿).
Second, we consider the case where 𝑎(𝐿) = 𝜒 is simply a constant. If so, 𝜓(𝐿) becomes

𝜓(𝐿) =
𝑑𝜆(𝐿) + 𝜎2

𝑢𝑞(𝐿)𝜒
𝑑(1 + 𝜎2

𝑢)𝑝(𝐿)𝜆(𝐿)
,

and by definition, 𝜆(𝐿) satisfies

𝑑2𝜆(𝐿)𝜆(𝐿−1) = 𝜎2
𝑢𝜒

2 + 𝜎2
𝜀 (1 + 𝜎2

𝑢)𝑏(𝐿)𝑏(𝐿−1). (A.12)

If 𝑏(𝐿) is constant, then both 𝜓(𝐿) and 𝜆(𝐿) must be constants. But this leads to a contradiction since the order of 𝑞(𝐿) is at
most 𝑝 − 1 and the order of the denominator is 𝑝.

If 𝑏(𝐿) have at least one root, condition (A.12) implies that the order of 𝜆(𝐿) is the same as the order of 𝑏(𝐿), and 𝜆(𝐿) and 𝑏(𝐿)
cannot have any common roots. Then, to match with 𝜙(𝐿), the denominator of 𝜓(𝐿) must not have any root of 𝜆(𝐿), which
requires that the roots of the numerator 𝑑𝜆(𝐿) + 𝜎2

𝑢𝑞(𝐿)𝜒 contain all the roots of 𝜆(𝐿). Consequently,

𝜓(𝐿) = 𝜆(𝐿)[𝑑 + 𝑞1(𝐿)]
𝑑(1 + 𝜎2

𝑢)𝑝(𝐿)𝜆(𝐿)
=

𝑑 + 𝑞1(𝐿)
𝑑(1 + 𝜎2

𝑢)𝑝(𝐿)
,

where 𝑞1(𝐿) is such that 𝑞(𝐿)𝜎2
𝑢𝜒 = 𝜆(𝐿)𝑞1(𝐿).

Let 𝑛𝑏 be the order of 𝑏(𝐿), which is the order of 𝜆(𝐿) as well. Since the order of 𝑞(𝐿) is at most 𝑝−1, the order of 𝑑+ 𝑞1(𝐿) is at
most 𝑝−𝑛𝑏 −1. Meanwhile, the order of the denominator is simply 𝑝. The difference of the orders between the denominator
and the numerator is then at least 𝑛𝑏 + 1. This cannot equal to the difference between the order of 𝑏(𝐿) and the order of 𝑎(𝐿),
which is 𝑛𝑏 . This is a contradiction again and 𝜓(𝐿) cannot match with 𝜙(𝐿).
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