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Abstract

We show that the equilibrium policy rule in beauty-contest models is equivalent to that of a
single agent’s forecast of the economic fundamental. This forecast is conditional on a modified
information process, which simply discounts the precision of idiosyncratic shocks by the degree
of strategic complementarity. The result holds for any linear Gaussian signal process (static or
persistent, stationary or non-stationary, exogenous or endogenous), and also extends to network
games. Theoretically, this result provides a sharp characterization of the equilibrium and its
properties under dynamic information. Practically, it provides a straightforward method to solve
models with complicated information structures.
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1 Introduction

“It is not a case of choosing those that, to the best of one’s judgment, are really the prettiest, nor even
those that average opinion genuinely thinks the prettiest. We have reached the third degree where we
devote our intelligences to anticipating what average opinion expects the average opinion to be. And
there are some, I believe, who practice the fourth, fifth and higher degrees.” — Keynes (1936)

Many economic problems with information frictions can be formalized as a beauty-contest problem.
The effects of monetary policy (Woodford, 2002), sentiments driven business cycle fluctuations (An-
geletos and La’O, 2010; Benhabib, Wang, and Wen, 2015), and the optimal degree of transparency
in central bank communication (Morris and Shin, 2002) are some examples. In these beauty-contest
models, a common feature is that agents care about certain pay-off relevant economic fundamentals,
and due to strategic complementarity,1 about other agents’ actions and beliefs, as well.

As originally emphasized by Keynes (1936), in these beauty-contest models with asymmetric infor-
mation, the dependence of an agent’s action on the actions, and therefore, beliefs of others, makes it
necessary to infer others’ beliefs about others’ beliefs, and so on. These higher-order beliefs introduce
rich dynamics that help account for certain salient features of the data, but they are typically difficult
to characterize. In this paper, we show that, in a large class of models, in fact, agents’ equilibrium
behavior can be equivalently represented by the solution to a single-agent problem. In this alterna-
tive problem, agents only need to forecast economic fundamentals but are equipped with less precise
private information. In Keynes’ language, our results imply that the nature of the optimal strategy,
in a sense, is still to choose the prettiest based on the best of one’s judgment while downplaying any
idiosyncrasies in one’s taste.

The rationale for this equivalence can be understood in a simple static setting. Imagine a single-
agent problem of forecasting an economic fundamental having received a public and a private signal
about it. Bayesian inference implies that the relative weights put on the public and private signals
should be proportional to their precision. In contrast, an agent in a beauty contest, due to strategic
complementarity, also needs to forecast others’ actions. The public signal is more useful for that
purpose. As a result, the optimal strategy in a beauty contest is to assign additional weight to the
public signal or discount the private signal. This policy rule—underweighting private signals—turns
out to be exactly equivalent to that of a single-agent problem with the precision of the private signal
reduced by a fraction equal to the degree of strategic complementarity.

Main result In this paper, we formalize this equivalence and generalize it to models with dynamic
information. We first define an α-modified signal process, where α parameterizes the strength of

1We formulate our argument based on the case with strategic complementarity most of the time, but our results
extend to the case with strategic substitutability.
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strategic complementarity among agents’ actions. In this modified signal process, the precision of all
idiosyncratic shocks is multiplied by 1 − α, while those of common shocks remain the same. Here,
the key distinction is between idiosyncratic and common shocks, rather than between private and
public signals.2 We then define an auxiliary single-agent problem, in which the objective is to simply
forecast the economic fundamental using the α-modified signals while completely disregarding others’
actions.

Our main result (Theorem 1) establishes that the policy rule in the equilibrium of the beauty-
contest model is the same as in the corresponding single-agent problem with α-modified signals. This
result yields a sharp characterization of the equilibrium. It bypasses the complexity of higher-order
expectations and shows that the optimal policy rule can be understood via a modified forecast of the
exogenous economic fundamental. It also avoids the fixed-point which results from the interaction
between rational agents and provides a new window to understand the underlying general-equilibrium
(GE) feedback effects. This result does not imply that higher-order beliefs are not important, but it
does imply that the computation of equilibrium can be greatly simplified.

The very nature of non-cooperative solution concepts in game theory is to transform a collective
decision problem into a family of single-player decision problems. What is special about our solution
is the simple form it takes and how this form is preserved across a class of models. Importantly,
the equivalence is proved under a general information structure that allows for an arbitrary number
of Gaussian shocks and any linear signal process—static or persistent, stationary or non-stationary,
exogenous or endogenous. For all different signal processes, the modification necessary to yield the
equivalence is always the same: discounting the precision of idiosyncratic shocks by a fraction α. A
similar modification also applies to models in which agents choose multiple correlated actions each
period.

This generality makes our method particularly useful for applied work where the fundamental is
often persistent and signals are correlated over time. In this case, one needs to find a set of sufficient
statistics or state variables that can summarize the past information. In contrast to complete-
information models in which the right state variables are easy to obtain (such as capital and TFP
in real-business-cycle models), with dispersed information this is usually not the case. When signals
permit a state-space representation, the single-agent solution yields a formula for the policy rule that
is ready for computation. It also implies that, even though recording all higher-order expectations
would require an infinite number of state variables, solving for the optimal action only requires a
finite number of state variables.

Another immediate implication of the main result is that the aggregate outcome in a beauty-contest
2 Relative to the previous two-signal example, a signal can contain multiple common and idiosyncratic shocks in

general, and the α-modified signal process determines the exact extent to which agents should discount the signal.
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model is equivalent to the average forecast in the single-agent problem. It follows that, in particular,
two determinants of the aggregate outcome—the strength of strategic complementarity and the
degree of information frictions—cannot be separately identified solely by aggregate time series. When
lacking evidence on one of them, the fact that the single-agent model yields more dispersed forecast
errors and actions can help achieve identification when cross-sectional moments are available. With
independent micro evidence on both, our solution method can simply be used to quantify the role of
information frictions.

Applications The single-agent solution provides an alternative perspective to understand proper-
ties of beauty-contest models, extends existing results to general information structures, and expands
the type of questions one can explore.

We first revisit two important themes in the dispersed information literature: inertia and GE at-
tenuation. With dynamic information, the aggregate outcome displays additional inertia relative to
its complete information counterpart as it inherits the persistence of all higher-order expectations
(Woodford, 2002; Nimark, 2017; Angeletos and Huo, 2018). Through the lens of the single-agent
solution, the aggregate outcome is anchored by past outcomes as forecasts are anchored by priors.
We contribute to show that the strength of the linkages to past outcomes is pinned down by the
Kalman gain matrix associated with the α-modified signals and we provide its exact formula.

The GE feedback underlying beauty-contest models is captured by the strategic complementarity, and
incomplete information tends to attenuate its effects (Angeletos and Lian, 2016a). Our single-agent
solution contributes to the literature by providing an alternative interpretation and a generalization
of existing comparative statics. With what is known as an independent-value best response, we show
that the GE effects are captured by the first-order expectation of the fundamental with α-modified
signals. It is then immediate that the GE effects are attenuated when information is incomplete,
since the expectation of the fundamental moves less than the fundamental itself.3 Moreover, a
larger degree of complementarity implies a noisier signal in the single-agent solution, and therefore
a stronger attenuation effect. These results hold for a general class of information processes.4

We also utilize the fact that the single-agent solution can deal with nonstationary processes to
demonstrate that the results on the social value of public information in Morris and Shin (2002)
can be reversed in transition. In a static setting, Morris and Shin (2002) prove that increasing the
precision of public information can be detrimental to social welfare. We first extend this finding to
dynamic information when comparing steady-state welfare. The result is actually strengthened in

3For a common-value best response, the attenuation effects imply that the volatility of aggregate outcome is always
bounded above by that of the average expectation of fundamental.

4In Angeletos and Lian (2016b), similar comparative statics are established for a two-signal static environment.
Also, differently from Bergemann and Morris (2013) we fix the underlying information structure when varying the
degree of strategic complementarity.
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the sense that a more persistent fundamental leads to a wider range of public information precision
levels for which more precise information can be detrimental. However, we also show that comparing
steady states can be misleading since welfare can be improved for quite a long time during the
transition before decreasing towards a lower level in the new steady state.5

Extensions We explore two extensions of our results. First, we consider a network game with
incomplete information, in which agents have heterogeneous payoff structures and information struc-
tures. The equilibrium actions turn out to be a weighted average of forecasts of fundamentals
conditional on different modified signals. When information is persistent, our characterization of the
equilibrium in terms of forecasts of fundamentals remains convenient and intuitive. It allows for a
recursive representation and avoids the burden of carrying an infinite number of signals, which is
new to the existing literature.

Second, we consider beauty contest models with intertemporal strategic complementarities. Under
a stylized information structure with forward-looking complementarity (Allen, Morris, and Shin,
2006; Angeletos and Lian, 2018; Angeletos and Huo, 2018), we show that our single-agent solution
still works, though the modification to the signal process is more involved. Because of the forward-
looking behavior, the required discounting of private signals is not simply the degree of strategic
complementarity anymore but also hinges on the details of the information structure. More generally,
when an individual’s payoff depends on future and past aggregate actions in an arbitrary way, we
show that our single-agent solution may not hold, drawing a limit to the applicability of our results.

Related Literature Our results complement a large literature on dispersed information and im-
perfect coordination. The classical papers that explore the general properties of beauty-contest
models include Morris and Shin (2002), Angeletos and Pavan (2007), Bergemann and Morris (2013),
and Angeletos and Lian (2016b). These papers focus on a static setting. The single-agent solution
contributes to this literature by providing a novel equilibrium characterization, which accommo-
dates essentially arbitrary information structures under Gaussian shocks. This generality becomes
particularly useful for models with dynamic information.

In terms of the applications in macroeconomics, our paper is closely related to Woodford (2002) and
Angeletos and La’O (2010), which study models with dispersed and dynamic information. These pa-
pers numerically explore the persistence of the aggregate outcome under a particular signal structure.
We offer an exact formula that characterizes the entire dynamics of the aggregate outcome for gen-
eral information structures. With this formula, the comparative statics results, and the single-agent
perspective, our work complements the large literature that studies how information frictions shape

5Amador and Weill (2012) also considers the transition dynamics. In their setting, the fundamental is fixed over
time and the welfare decreasing is due to that the informativeness of endogenous signal becomes worse, while we allow
the fundamental to fluctuate over time and we consider only exogenous information as in Morris and Shin (2002).
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business cycles and interact with monetary policy (Hellwig, 2004; Lorenzoni, 2009; Venkateswaran,
2014; Drenik and Perez, 2015).6

Our contribution to the literature on network games with incomplete information (De Martí and
Zenou, 2015; Bergemann, Heumann, and Morris, 2017) is to provide an equilibrium characterization
that extends to environments with dynamic information and are not subject to the curse of dimen-
sionality. The extension of our results to forward-looking complementarity is related to Nimark
(2017), Huo and Takayama (2017b), and Angeletos and Huo (2018). These papers, however, do not
recast the policy rule as a single-agent solution.

We make two contributions to the literature on computing dispersed-information models: (1) our
solution allows one to explore environments with non-stationary processes, which encompasses models
with time-varying parameters and regime switching, for instance; (2) for models with exogenous
information, our method delivers the solution without the need to solve a fixed-point problem—the
policy rule can be obtained from a straightforward linear forecast. The guess-and-verify approach
used in Woodford (2002) and Angeletos and La’O (2010) is useful for some relatively low-dimensional
signal processes, while the approach in this paper eliminates the need to guess the solution altogether.
The method in Huo and Takayama (2017b) can solve a larger class of models, but it relies on
frequency-domain techniques that may involve solving for the roots of high-order polynomials. This
paper stays within the time domain where easy and robust algorithms such as the Kalman filter
can be applied. The single-agent solution method is also useful for solving models with endogenous
information, which complements existing methods (Sargent, 1991; Lorenzoni, 2009; Nimark, 2017)
with the advantage that our solution requires a smaller number of state variables.

Finally, there is a large literature that emphasizes the importance of higher-order beliefs (e.g. Ru-
binstein (1989), Carlsson and van Damme (1993), Kajii and Morris (1997), Weinstein and Yildiz
(2007a), and Ely and Pȩski (2011)). These results can be unsettling since it is hard to imagine that
one could observe an individual’s infinite belief hierarchy, yet it could be that a model’s prediction
can change if beliefs of arbitrarily high order are modified. Thus, it is relevant to point out that
the beauty contest models studied in this paper satisfy Weinstein and Yildiz (2007b)’s criterion of
‘global stability under uncertainty’ which implies that beliefs of sufficiently high order have a van-
ishing effect on equilibrium outcomes. This does not mean, however, that higher-order beliefs are
not important—they can still have quantitatively and qualitatively large effects.

The rest of the paper is organized as follows. Section 2 explains the single-agent solution in a simple
static model. Section 3 sets up the environment and defines equilibrium. Section 4 proves the main
result and variations of it. Section 5 provides several applications of the single-agent solution. Section
6 shows how it applies to models with endogenous information. Section 7 discusses the extensions

6This is a very partial list. We refer to Angeletos and Lian (2016b) for a much more comprehensive review.
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to network games and to models with dynamic complementarity. Section 8 concludes.

2 A Motivating Example

To illustrate the basic idea and motivate our general result, we start from the static beauty-contest
model considered by Morris and Shin (2002). The economy consists of a continuum of agents, indexed
by i, with payoff functions given by

U(yi, y, θ) = −(1− α)(yi − θ)2 − α(yi − y)2.

Agent i’s best response, yi, is a weighted average of her forecast of an exogenous fundamental, θ,
and the aggregate action, y. That is,

yi = (1− α)Ei[θ] + αEi[y], with y =

∫
yi. (2.1)

The parameter α, which we assume satisfies α ∈ (−1, 1),7 determines the degree of strategic com-
plementarity (α > 0) or substitutability (α < 0) between agents’ actions. The operator Ei[·] denotes
the expectation conditional on agent i’s information set, which consists of a public signal z and a
private signal xi about the exogenous fundamental θ,

z = θ + ε, and xi = θ + νi, (2.2)

where ε ∼ N (0, τ−1
ε ), and νi ∼ N (0, τ−1

ν ) stand for public and private noise, and τε and τν are their
respective precisions. We assume that agents have a common prior about the fundamental θ, that
is, θ ∼ N (0, τ−1

θ ).8

A useful way to understand the logic behind agents’ actions is to examine their higher-order expec-
tations. Define higher-order expectations recursively in the following way:

E0
[θ] ≡ θ, and Ek

[θ] ≡
∫

Ei

[
Ek−1

[θ]
]
.

By consecutive substitution of the equations in (2.1), we can write agent i’s action as a weighted
7With α > 1, there could be multiple equilibria if the action is bounded. By assuming α ∈ (−1, 1), we can guarantee

the existence of a unique equilibrium that can be represented by the sum of infinite higher-order expectations, which
satisfies the ‘global stability under uncertainty’ condition provided by Weinstein and Yildiz (2007b).

8Morris and Shin (2002) assume that agents have an improper prior about θ. This change is mostly immaterial,
but connects better to our subsequent dynamic analysis.
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average of her higher-order expectations,9

yi = (1− α)
∞∑
k=0

αk Ei

[
Ek

[θ]
]
.

One can immediately see that an individual agent’s optimal action depends not only on her own
assessment of the fundamental, but also on her expectation about the average assessment of the
fundamental, and so on. This is the original idea put forward by Keynes about the nature of beauty
contests. Under the normality assumptions made above, all the higher-order expectations can be
written as linear combinations of the signals. It is, then, straightforward to define the Bayesian-Nash
equilibrium of this economy:

Definition 1. Given the signal process (2.2), a linear Bayesian-Nash equilibrium is a policy rule
h = {h1, h2} ∈ R2, such that

yi = h1z + h2xi

satisfies the equations in (2.1).

The method of undetermined coefficients yields the following equilibrium policy rule:

yi =
τε

τθ + τε + (1− α)τν
z +

(1− α)τν
τθ + τε + (1− α)τν

xi. (2.3)

This policy rule has the property that agents put relatively more weight on the public signal when
the degree of strategic complementarity, α, is higher. The reason is that the public signal is more
informative about the aggregate action and has an additional coordination role. A higher α implies
that agents have a stronger incentive to be closer to the aggregate action, and therefore rely less on
private signals. So far, this solution and its interpretation is reminiscent of Morris and Shin (2002).
Now, we offer an alternative perspective.

A Single-Agent Solution For comparison, the forecast about the fundamental itself is

Ei[θ] =
τε

τθ + τε + τν
z +

τν
τθ + τε + τν

xi, (2.4)

where the weights on the public and private signals are proportional to their relative precisions.
9To see this, note that

yi =(1− α)Ei[θt] + αEi[y] = (1− α)Ei[θ] + αEi

[∫
(1− α)Ej [θ] + αEj [y]

]
=

=(1− α)Ei[θ] + α(1− α)Ei

[
E1

[θ]
]
+ α2Ei

[∫
Ej [y]

]
= · · · = (1− α)

∞∑
k=0

αk Ei

[
Ek

[θt]
]
.
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The equilibrium policy rule (2.3) resembles the simple forecast rule (2.4) of the economic fundamental.
They differ only with respect to the precision of the private signal noise. Define the following modified
private signal

x̃i = θ + ν̃i, ν̃i ∼ N (0, ((1− α)τν)
−1),

with the precision of the private signal noise discounted by the degree of strategic complementarity
α, while the public signal remains unchanged. Let Ẽi[·] denote the expectation conditional on the
modified signals.

The coefficients of the equilibrium policy rule, {h1, h2}, can be obtained immediately by solving the
problem of forecasting θ, given the modified signals, which leads to

Ẽi[θ] =
τε

τθ + τε + (1− α)τν
z +

(1− α)τν
τθ + τε + (1− α)τν

x̃i = h1z + h2x̃i.

Hence, the weights the agents put on signals in equilibrium are exactly the same as the weights in a
simple forecast of the fundamental with adjusted precision of private signals.

To see where the discounting comes from, consider the case where τε = 0, so that agents disregard the
public signal. This specification delivers a particularly simple structure for higher-order expectations,

E1
[θ] = λθ, and Ek

[θ] = λEk−1
[θ]. (2.5)

where λ ≡ τν
τθ+τν

. Then, the aggregate action can be expressed as

y = (1− α)
∞∑
k=0

αk Ek+1
[θ] = (1− α)λ

∞∑
k=0

(αλ)k θ (2.6)

Next, consider a variant representative-agent economy where agents share the same first-order ex-
pectation, E[θ] = λ̃θ, and all agents’ beliefs are common knowledge. In this economy, all higher-order
expectations collapse to the first-order expectation, Ek

[θ] = E[θ] for all k, and the aggregate action
is akin to a simple forecasting problem. The higher-order expectation representation still applies, so

y = (1− α)

∞∑
k=0

αk Ek+1
[θ] = (1− α)λ̃

∞∑
k=0

αk θ. (2.7)

In equation (2.6), the lack of common knowledge leads to the additional discounting (αλ)k, compared
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with αk in equation (2.7). Note that by setting λ̃ to a lower value than λ such that

λ̃
∞∑
k=0

αk = λ
∞∑
k=0

(αλ)k,

the aggregate action in these two economies are equivalent. It is easy to verify that the precise way
to lower λ̃ is to discount the private signal’s precision by a fraction of α.10

Several remarks are in order. First, the fact that the equilibrium can be expressed by a particular
first-order expectation is not surprising on its own. In fact, in equilibrium, agents’ actions are always
a first-order expectation about (1−α)θ+αy. What is less obvious about our single-agent solution is
that the equilibrium outcome is the same as the first-order expectation about the fundamental itself,
and the required modification of the information structure is simple, known ex ante, and independent
of the details of the signal process.
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Figure 1: Impulse Response of Higher-Order Expectations with Persistent Information
Parameters: τη = 1, ρ = 0.95, τν = 0.25, and α = 0.8.

To appreciate this point, notice that the proportionality between higher-order expectations in equa-
tion (2.5) is only valid for this very particular information structure. When information is persistent,
higher-order expectations typically have complex dynamics. For example, consider a dynamic version
of the setup above in which the fundamental θt follows an AR(1) process,11

θt = ρθt + ηt, ηt ∼ N (0, τ−1
η ). (2.8)

10To be explicit, it follows that:

λ̃
1

1− α
= λ

1

1− αλ
⇒ λ̃ =

τν
τθ + τν

1− α

1− α τν
τθ+τν

⇒ λ̃ =
(1− α)τν

τθ + (1− α)τν
.

11The exact setup is explained in Example 1.
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Figure 1 shows the impulse responses of higher-order expectations to the fundamental shock, ηt.
As the order increases, more state variables are required to describe the dynamics of higher-order
expectations. In fact, the k-th order higher-order expectation follows an ARMA(k+1, k−1) process.

A rescaling of the single-agent forecast with unmodified signal precision would allow one to match
the initial dampening of the aggregate outcome response. However, this modification cannot match
the entire impulse response, as higher-order expectations exhibit less amplitude and more persis-
tence, with the peak of the hump happening at later periods. In contrast, a single-agent forecast
with appropriately discounted private signal precision matches the entire dynamics of the aggregate
outcome. To see why this is possible, note that the optimal forecast about the fundamental under
Bayesian learning is a weighted average of its prior mean and the new signal. With a less precise
signal, agents lower the weight attached to the new signal, and simultaneously increase the weight
put on the prior mean. The former reduces the amplitude of the direct effect of a shock to θt, and
the latter increases its persistence.

In general, with persistent information, solving and analyzing beauty-contest models becomes signifi-
cantly more difficult. In contrast to the static case, the standard method of undetermined coefficients
is not useful because, in principle, an infinite number of coefficients needs to be solved for. This is
where our results become most useful since the single-agent solution survives under general informa-
tion structures.

3 Preliminaries for Beauty-Contest Models

In this section, we introduce a dynamic setting with a much richer information structure. In the
following section, we prove the equivalence result.

3.1 Beauty-Contest Model

Best Response Denote agent i’s action in period t by yit. For presentation purposes, here we only
consider the case in which the action is univariate. In Section 4.3, we extend this model to allow for
multiple, and possibly correlated, actions. The best response function is similar to the one used in
Section 2,

yit = (1− α)Eit [θt] + αEit [yt] , with yt =

∫
yit. (3.1)

Analogously to Section 2, agents i’s optimal action can be expressed as

yit = (1− α)
∞∑
k=0

αk Eit

[
Ek
t [θt]

]
. (3.2)
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Note that with dynamic information, the higher-order expectations are also time varying. To guar-
antee the existence and uniqueness of the equilibrium, we assume that the degree of strategic com-
plementarity is less than 1 in absolute value.

Assumption 1. The degree of strategic complementarity α ∈ (−1, 1).

This best response can arise in various economic environments. In Section 2, we see that it can be
the result of a quadratic loss function, as in Morris and Shin (2002), Angeletos and Pavan (2007),
and Hellwig and Veldkamp (2009), for instance. The same type of best response can arise in real
business cycle models (Angeletos and La’O, 2010, 2013; Venkateswaran, 2014; Huo and Takayama,
2017a), and in monetary economies (Woodford, 2002; Maćkowiak and Wiederholt, 2009; Drenik and
Perez, 2015). We include two detailed examples in Online Appendix E for illustration.

Though the best response function we consider here is widely used in the literature, there are two lim-
itations. First, it is implicitly assumed that all agents are symmetric, which excludes the possibility
that agents have heterogeneous payoff or information structures, such as in a network game. Second,
the individual action can only depend on the current aggregate action. This excludes intertemporal
complementarities, in which agents’ payoffs today may depend on future or past aggregate actions.
In Section 7, we discuss to what extent our results can be extended to these environments.

Information Structure Next, we specify the stochastic process for the economic fundamental
and the signals agents receive about it. We first consider the exogenous information case, by which
we mean that the signals do not depend on agents’ actions. This specification allows us to present
our results more transparently. However, our single-agent solution is not limited to the exogenous
information case. In Section 6, we show that our main results also hold if information is endogenous,
with signals that do depend on agents’ actions.

Throughout, we consider the following signal process with discrete time. In period t, agent i observes

xit = Mt (L) εit, (3.3)

where the signal xit is an r × 1 stochastic vector, the shock εit is an m × 1 stochastic vector, and
Mt(L) is an r×m polynomial matrix in the lag operator L, which can be time dependent. We make
the following assumptions about the signal process.

Assumption 2. The polynomial matrix Mt(L) satisfies

Mt(L) =
∞∑
τ=0

Mt,τL
τ ,

where each element of {Mt,τ}∞τ=0 is square-summable.
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The elements of εit are uncorrelated12 Gaussian shocks. The covariance matrix of εit is denoted by
Σ2, where Σ = diag (σ1, σ2, . . . , σm). Further, εit can be partitioned into two parts,

εit =

[
ηt

νit

]
, with

∫
νit = 0,

where the first u < m shocks, ηt, are common to all agents and the last m − u shocks, νit, are
idiosyncratic.

For now, we assume that the fundamental θt is driven only by the common shocks ηt. A common-
value best response is one that satisfies this condition—we relax this assumption in Section 4.3. We
allow the stochastic process of the fundamental, as for the signals, to be time dependent.

Assumption 3. The process of the exogenous fundamental θt is given by

θt =
[
ϕ′
t (L) 0

]
εit = ϕ

′
t (L)ηt, (3.4)

where ϕt (L) =
∑∞

τ=0ϕt,τL
τ is a u× 1 vector of polynomials in L and each element of {ϕt,τ}∞τ=0 is

square-summable.

The superscript t denotes the history up to t, for example xt
i ≡ {xit,xit−1,xit−2, . . .}. Agent i’s

information set in period t, Iit, includes the history of observed signals, and also the structure of the
stochastic processes,

Iit = {xt
i,M

t(L),ϕt(L)}.

The expectation operator Eit [·] stands for E [· | Iit], where E [·] denotes the unconditional expectation.
Note that ϕt(L) and Mt(L) can change in a deterministic or stochastic way, and that agents only
need to know their realizations up to the current period, t.13

The information structure we have specified above is quite general. The following examples show
that signal processes commonly used in the literature are special cases of it.

1. Static Case: Suppose that ϕt(L) = ϕ and Mt(L) = M. In this case, the past signals are not
informative about the current fundamental. For example, consider

ϕ =
[
1 0 0 0

]
, M =

[
1 1 0 0

1 0 1 1

]
⇒

x1it = θt + χt

x2it = θt + ξt + uit

12The assumption that the shocks are uncorrelated is immaterial since a signal process with correlated shocks can
be rewritten in terms of one with uncorrelated shocks.

13Also notice that the freedom to choose the primitive ϕt in Assumption 3 already implies that the best-response
function could depend on the fundamental θt in any period. This is because for θt+k = ϕ′

t(L)L
−kηt, with any k,

positive or negative, we can always define a new fundamental ξt ≡
[
ϕ′

t(L)L
−k

]
+
ηt, so that Eit[θt+k] = Eit[ξt].

13



where all the shocks, εit = [θt, χt, ξt, uit]
′, follow i.i.d. processes. This structure is similar to the

specification in Angeletos and Lian (2016b), and it reduces to the case considered in Bergemann and
Morris (2013) when setting the variance of ξt to zero.

2. Stationary Signal: Suppose that ϕt(L) = ϕ(L) and Mt(L) = M(L). In this case, the signal
structure is time independent. For example, consider

ϕ(L) =
[

1
1−ρ1L

0 0
]
, M(L) =

[
1

1−ρ1L
1

1−ρ2L
0

1
1−ρ1L

0 1
1−ρ3L

]
⇒

θt = 1
1−ρ1L

ηt

x1it = θt +
1

1−ρ2L
ξt

x2it = θt +
1

1−ρ3L
uit

with i.i.d. shocks εit = [ηt, ξt, uit]
′. This structure allows a persistent fundamental and a persistent

aggregate noise, which can be viewed as variations of the information structure adopted in Huo and
Takayama (2017a) and Angeletos, Collard, and Dellas (2018).

3. Non-Stationary Signal: Since we allow ϕt(L) and Mt(L) to be time dependent, the signals can be
non-stationary. For example, consider

ϕt(L) =
[
1 0 0

]
, Mt(L) =

[
1 0 1

1 σt 0

]
⇒

x1it = θt + uit

x2it = θt + σt ξt

with i.i.d. shocks εit = [θt, ξt, uit]
′. The time-varying parameter σt allows the precision of x2it to

change over time. This is similar to Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017) where
the endogenous learning effectively generates time-varying informativeness. Also, Drenik and Perez
(2015) explore how higher uncertainty about inflation influences the effectiveness of monetary policy
using a similar device. In general, time-varying variances or other structural parameters can be easily
incorporated into ϕt(L) and Mt(L).

Another type of non-stationary signal process occurs when one of the random variables has a unit
root. For example, suppose that {θ−1, θ−2, . . .} is publicly known, and from t = 0 on, the fundamental
process and signal structure are given by

∆θt = ρ∆θt−1 + ηt, and xit = θt + uit.

In this case, θt itself is not stationary if one looks forward in time, but at any given time, ϕt(L) and
Mt(L) are still stationary.14 This specification is similar to the one in Woodford (2002).

14With θt known for t < 0, it is straightforward to see that ϕt(L) and Mt(L) both represent finite moving-average
processes. If θt is unknown for t < 0, we would then need to require that the past signals before t < 0 follow stationary
processes.
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Equilibrium As is standard in the dispersed information literature, we employ the Bayesian-Nash
equilibrium concept. The following proposition establishes the existence, uniqueness, and linearity
of the equilibrium.

Proposition 1. Under Assumptions 1-3, there exists a unique Bayesian-Nash equilibrium and the
equilibrium is linear in signals,

yit = h′
t(L)xit,

where h′
t(L) is a time-dependent vector of polynomial functions.15

Proof. See Appendix A.3.

Heuristically, with exogenous information and with α ∈ (−1, 1), the right-hand side of equation (3.2)
implies that agent i’s equilibrium action is well defined and unique. Since the fundamental and
signals are driven by Gaussian shocks, the optimal forecasts are always linear functions of signals.16

3.2 Single-Agent Problem

To define the single-agent problem corresponding to a beauty-contest model, we need to first describe
the appropriately modified signal process.

Definition 2. Given the original signal process defined in equation (3.3) with Assumptions 1 and 2
being satisfied, the α-modified signal process is

x̃it = Mt (L) ε̃it,

where

ε̃it ≡ Γεit, and Γ ≡

[
Iu 0

0 1√
1−α

Im−u

]
.

Note that the α-modified signal process simply reduces the precision of all the idiosyncratic shocks
νit by a factor of 1−α, and leaves the precision of common shocks ηt unchanged. A public signal is,
by definition, one that depends only on the common shocks ηt, and, therefore, is unaffected by the
modification. A private signal, on the other hand, must contain some of the idiosyncratic shocks νit
and has its precision adjusted in the α-modified signal process.

15The results in this proposition have all been previously established in the literature, we include them here for
completeness.

16With endogenous information, the uniqueness is no longer guaranteed. Online Appendix H.2 provides an exam-
ple with multiple linear equilibria. Furthermore, with endogenous information, we cannot exclude the possibility of
nonlinear equilibria, and we restrict our attention to linear equilibria there.
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We let Ẽit[·] denote the expectation operator conditional on the α-modified signal process. The
single-agent problem is to forecast the economic fundamental without paying attention to other
agents’ actions, that is to solve for Ẽit[θt].

4 The Single-Agent Solution

In this section, we connect the beauty-contest model with the single-agent problem. We first lay out
the main theoretical result, and then proceed to its several variations.

4.1 Equivalence Result

Theorem 1. Under Assumptions 1-3, let ht(L) denote the equilibrium policy rule, that is

yit = h′
t(L)xit.

Then, the same ht(L) is the forecasting rule of the fundamental θt conditional on the α-modified
signal process,

Ẽit[θt] = h′
t(L)x̃it.

Proof. See Appendix A.

Theorem 1 characterizes the individual’s policy rule concisely. The equilibrium in the beauty-contest
model involves the following fixed point problem: an agent’s action depends on her individual forecast
about the aggregate action, but the law of motion of aggregate action is the result of individuals’
forecasts. Theorem 1 shows that this fixed point problem can be avoided. The policy rule is exactly
the same as the one that solves a simple forecasting problem, which can be viewed as a single agent’s
first-order expectation. The required transformation of the signal process takes a simple form, and
this simple form is preserved across a large class of information structures.

In beauty-contest models, agents’ actions depend on the forecast of the fundamental and the forecast
of others’ actions. The former is pinned down by a first-order expectation, and the latter by higher-
order expectations. A higher α raises the relative importance of higher-order expectations and
effectively shifts agents’ actions towards higher-order expectations. In the corresponding single-agent
problem, to induce the same policy rule, the precision of private signals has to be discounted.

The proof of Theorem 1 follows two steps: (1) we show that the equivalence holds when the funda-
mental and the signal processes follow finite MA(q) processes; and (2) we show that the equivalence
remains true when q goes to infinity.17 In step (1) we effectively use the method of undetermined

17This is where the square-summable property in Assumptions 2 and 3 become necessary.
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coefficients to solve for the equilibrium policy rule, however, we are not interested on the coefficients
themselves but on a property that they satisfy, namely that they are equivalent to a forecasting
problem with the appropriately modified signal process. This is because solving for each coefficient
becomes intractable as q goes to infinity, which is not the case for the corresponding forecasting
problem. In most applications, the signal process permits a state-space representation with a recur-
sive structure. If this is the case, the following proposition gives an explicit procedure for obtaining
the equilibrium policy rule using the standard Kalman filter.

Proposition 2. In addition to Assumptions 1-3, suppose the signal structure allows the following
state-space representation

ξit = Ftξit−1 +Qtεit, with ξi,−1 = 0,

together with the observation equation and the law of motion of the fundamental,18

xit = Htξit, and θt = Gtξit.

Then, the optimal action is given by
yit = Gtzit,

where the evolution of the sufficient statistics, zit, follows

zit = (I−KtHt)Ftzit−1 +Ktxit,

Kt = PtH
′
t

(
HtPtH

′
t

)−1
, (4.1)

Pt+1 = Ft+1 (Pt −KtHtPt)F
′
t+1 +Qt+1Γ

2Q′
t+1. (4.2)

where zi,−1 = 0 and P0 is the unconditional variance of ξi,0 with the α-modified signal process.

Proof. The result follows directly from Theorem 1 and the time-varying Kalman filter construction
in Hamilton (1994).

This proposition allows time-varying parameters and non-stationary processes, and therefore, can be
used to study transition dynamics. Readers who are familiar with the Kalman filter should recognize
that the law of motion for the vector of sufficient statistics, zit, resembles that of the prior mean of

18It is common to write the state space as

ξit = Ftξit−1 +Qtεit,
xit = Htξit +Rtεit.

By redefining the state variable zit, one can always include the noise in the observation equation as part of the state
variable and set Rt = 0.
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ξit. To convert the system into the α-modified signal process, the variance of the shocks is modified
by Γ2 in equation (4.2) for the covariance matrix Pt. This proposition states the result with a
particular starting point. For a stationary process without time-varying parameters, one could set
P0 to be the covariance matrix of the steady-state Kalman filter and obtain a time-invariant policy
rule. In quantitative applications, the information structure might be complicated, but even for large
scale state-space systems, the Kalman filter problem can be solved in a fast and robust way since it
involves simply iterating on equations (4.1) and (4.2). The following example shows how to apply
the single-agent solution.

Example 1. We return to the case introduced at the end of Section 2, where the fundamental, θt,
is assumed to follow an AR(1) process as in (2.8). For simplicity, suppose that agents only receive a
private signal about θt, so that the original signal and the corresponding α-modified signal are given
by

xit = θt + νit, νit ∼ N (0, τ−1
ν ),

x̃it = θt + ν̃it, ν̃it ∼ N (0, ((1− α)τν)
−1).

Instead of worrying about higher-order expectations, one can simply turn to our single-agent solution.
We start by solving the simple forecasting problem for the α-modified signal process, which can be
obtained via Proposition 2,

Ẽit[θt] = (1− ϕ)ρ Ẽit−1[θt−1] + ϕ x̃it, (4.3)

Thus, the optimal forecast is a weighted average of the prior ρ Ẽit−1[θt−1] and the new signal x̃it,
where the weight on the signal is the Kalman gain ϕ given by

ϕ ≡ (1− α)τν
κ+ (1− α)τν

, with κ ≡
[
ρ2 (κ+ (1− α)τν)

−1 + τ−1
η

]−1
.

These two equations are the versions of equations (4.1) and (4.2) for the example at hand and κ is
the precision of the prior. Using Theorem 1, we immediately obtain the individual policy function
and the law of motion of the aggregate action in the beauty-contest model from equation (4.3),19

yit = (1− ϕ)ρ yit−1 + ϕxit, and yt = (1− ϕ)ρ yt−1 + ϕ θt. (4.4)

Recall from Figure 1, higher-order expectations have significantly more complex dynamics than
first-order expectations. In contrast, the single-agent solution (4.4) is surprisingly simple. This
demonstrates the usefulness our method both for computation and for equilibrium characterization.

19Woodford (2002) solves this model numerically by a guess-and-verify approach and Huo and Takayama (2017b)
solve it analytically by a more complicated frequency domain method.
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We explore the dynamic properties of beauty-contest models further in Section 5.1.

4.2 Implications for Aggregates

Theorem 1 shows that the policy rule of an individual agent in the equilibrium and in the single-
agent problem is the same. The following corollary, shows that the aggregate outcome in these two
problems are the same since idiosyncratic shocks wash out in the aggregate.

Corollary 1. Under Assumptions 1-3, the aggregate outcome, yt, in equilibrium is the same as the
average expectation in the single-agent problem, i.e.,

yt =

∫
Ẽit[θt] ≡ Ẽt[θt].

This result has several direct implications. First, without precise knowledge about the strength
of the strategic complementarity and about the degree of information frictions, Corollary 1 raises
an identification issue. For instance, in Example 1, if the aggregate outcome can be justified by a
particular α and τν , there is a continuum of economies with the same product (1− α)τν that imply
the same aggregate outcomes. In particular, there is always a single-agent problem with no strategic
interaction that yields the same allocation.

In practice, there may exist independent micro evidence that helps to pin down the strength of
strategic complementarity. For example, in the monetary and the business cycle models, specified
in Online Appendix E, the strategic complementarity is determined by the elasticity of substitution
across varieties, the Frisch elasticity, and the degree of risk aversion, which have been estimated
based on various microdata. In this case, our single-agent result can be used to infer the required
degree of information frictions necessary to account for the aggregate allocation.

On the other hand, additional evidence on the degree of information frictions may be available.
For example, the Survey of Professional Forecasters and the Michigan Survey of Consumers contain
information about the magnitude and persistence of forecast errors, which can be used to discipline
information frictions. In this case, with knowledge also on information frictions, our equivalence
result can help quantify its role in shaping aggregate fluctuations.20

Finally, Corollary 1 does not imply the equivalence between models in terms of cross-sectional allo-
cation. In fact, the individual choices are different,

yit = h′
t(L)xit ̸= h′

t(L)x̃it = Ẽit[θt].

20See, for instance, Huo and Takayama (2017a), Drenik and Perez (2015), Melosi (2016), and Angeletos and Huo
(2018).
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In particular, to generate the same aggregate allocation, the signals in the single-agent model are
more dispersed, which translates into larger forecast errors and action dispersion. This difference
can help achieve identification when cross-sectional moments are available.

4.3 Generalized Best Response

So far, we have considered the classic beauty-contest game where agents’ best responses depend only
on a common fundamental, and agents only choose a single action each period. In many relevant
environments, however, agents’ payoffs depend on idiosyncratic factors, and agents choose more than
one action at the same time. In this section, we show how the single-agent solution extends to these
more general beauty-contest models.

We start by providing a corollary of Theorem 1 that relates higher-order expectations with the
first-order expectation in the single-agent model.

Corollary 2. Under Assumptions 2-3, for any α ∈ Z such that |α| < 1, the forecasting rule of a
geometric sum of infinite higher-order expectations about θt, is the same as that of the single-agent
problem21

(1− α)
∞∑
k=0

αk EitE
k
t [θt] = h′

t(L)xit,

Ẽit[θt] = h′
t(L)x̃it.

Proof. Given Theorem 1, this follows straightforwardly from equation (3.2).

Corollary 2 is a result about linear projections with Gaussian signals and can be used independently
of any equilibrium concept. It says that a geometric sum of infinite higher-order expectations is
equivalent to a particular first-order expectation. As already mentioned, expectations of higher
order typically become more complicated in the sense that more state variables are required to
forecast those higher-order expectations. If one wants to compute each of the infinite higher-order
expectations independently, then an infinite number of state variables are needed. Corollary 2 shows
that a first-order expectation with a slightly modified signal process yields the same result. This
result turns out to be useful in extending our single-agent solution to more general best responses.

21If α is a complex number, the modified precisions are complex numbers as well. In this case, Ẽit[·] only stands for
the operation required to conduct a forecast.
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Independent-Value Best Response Consider a best response function in which the relevant
fundamental contains idiosyncratic factors

yit = γEit[θit] + αEit[yt], (4.5)

which is commonly referred as independent-value best response. For this type of best response
function, the original single-agent solution does not apply exactly, but a slightly modified version
does.

Proposition 3. Suppose that Assumptions 1-3 are satisfied.22 Denote the forecast about the funda-
mental by

Eit[θit] ≡ g′
t(L)xit ≡ φt + ξit.

where ξit is only driven by idiosyncratic shocks. There exists a unique equilibrium policy rule ht(L)

such that
yit = γEit[θit] + α Eit[yt] = γ(φt + ξit) +

αγ

1− α
h′
t(L)xit,

and ht(L) is the same as the forecasting rule of φt conditional on the α-modified signal process,

Ẽit[φt] = h′
t(L)x̃it.

Proof. See Appendix D.1.

Multiple Actions Next, suppose that agents make multiple choices, each of which may depend on
multiple choices made by other agents in its own way. For example, an employer needs to decide not
only how many workers to hire, but also the number of working hours and the amount of effort each
worker needs to exert. A firm may decide simultaneously the level of production and the amount
of resources to spend on advertising. In these situations, the best response becomes a multivariate
system for a vector of actions, and a matrix instead of a number summarizes the primitive motive
for strategic interaction among agents. We show that a similar, though slightly more complicated,
single-agent solution holds in this type of environment.

Consider the environment described in Section 3, but with the following more general best response
function which allows for multiple actions depending on multiple fundamentals:

yit = Eit [θt] +AEit[yt], with yt =

∫
yit, (4.6)

where θt = [θ1t, θ2t, . . . , θnt]
′, yit, and yt are n× 1 vectors, and A is an n×n matrix. We denote the

22More precisely, the fundamental depends on both the aggregate and idiosyncratic shocks, θit =
∑∞

τ=0ψt,τL
τεit

and each element of {ψt,τ}∞τ=0 must be square-summable.
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eigenvalues of A by α = {αj}nj=1 and, in what follows, assume that:

Assumption 4. The matrix A is diagonalizable

A = QΩQ−1, and Ω = diag(α1, α2, . . . , αn),

and the absolute value of all of its eigenvalues is less than one, that is |αj | < 1 for all j.

Since there are multiple degrees of strategic complementarity, the policy function in the equilibrium
of the multi-variate beauty-contest model is equivalent, not to that of the simple forecasting with one
α-modified signal process, but a particular linear combination of all αj-modified signal processes. We
denote the analogues of Ẽit [·] and x̃it, with α = αj , by Ẽit[ · ;αj ] and x̃it(αj). The coefficients of this
linear combination can be obtained directly from the eigenvectors of A. The following proposition
is a natural extension of Theorem 1.

Proposition 4. Suppose Assumptions 2-3 and 4 are satisfied. Let gjt(L) be the policy rule to forecast
θt conditional on the αj-modified signal process,

Ẽit[θt;αj ] ≡ g′
jt(L)x̃it(αj),

Then, the equilibrium policy rule ht(L) is given by

h′
t(L) =

n∑
j=1

Qeje
′
jQ

−1 (I−A)−1 g′
jt(L),

where ej denotes the j-th column of an n× n identity matrix.

Proof. See Appendix D.2.

Proposition 4 provides a sharp characterization of the equilibrium. Crucially, the policy rules for all n
actions are based on the same set of modified signals. The heterogeneity between these actions is only
reflected in the associated weights, which are obtained from the eigenvectors of A. The analysis of
the equilibrium can be reduced to the model’s primitives: the matrix A and the exogenous forecasts
associated with the modified signals, again without the need to solve a fixed point problem.

The equivalence in Corollary 2 hinges on a special geometric weighting structure of higher-order
expectations. An implication of Proposition 4 is that this equivalence can be generalized to much
more flexible weighting structures.
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Corollary 3. Under Assumptions 2-3 and 4,

∞∑
k=0

Ak φEk+1
t [θt] =

n∑
j=1

Qeje
′
jQ

−1(I−A)−1φ Ẽt[θt;αj ], (4.7)

where φ is an arbitrary row vector.

On the left-hand side of equation (4.7), each row is a weighted sum of higher-order expectations.
Different A’s and φ’s imply different weighting structures, which can lead to complex combinations
of higher-order expectations. Despite this complexity, they are always equal to a weighted sum of a
finite number of first-order expectations.

5 Applications

In this section, we discuss several applications that utilize our single-agent solution to characterize
and understand the equilibrium of beauty-contest models with persistent information. Some of the
applications are simple in the interest of clarity, and it should be evident from the exposition above
that they, by no means, exhaust the environments in which the results are applicable.23

5.1 Inertia and Sentiments

When information is persistent and dispersed, the aggregate outcome can display rich dynamics,
which helps match some salient features of the data. For example, one empirical regularity is that
aggregate variables (such as output and inflation) respond to underlying shocks in a sluggish way
relative to what perfect information models predict. At the same time, higher-order expectations are
more anchored by common priors and often display inertia. In beauty contest models, the aggregate
outcome partially inherits properties of higher-order expectations, and therefore, can be more persis-
tent than its perfect information counterpart. Another popular theme is that information frictions
break the tight connection between the fundamental and the allocation, and rationalize fluctuations
driven by sentiments or animal-spirits.24 As mentioned earlier, though dispersed information is
crucial in understanding the propagation mechanism of these fluctuations, solving and especially
characterizing these models is typically difficult. The single-agent solution allows us to characterize
the dynamic properties of the equilibrium outcome under a general class of information structures.

Consider a setup with the best response given by equation (3.1) and signals that follow a stationary
process and permit a state-space representation as in Proposition 2,

ξit = Fξit−1 +Qεit, with xit = Hξit and θt = Gξit.

23We provide an example how to use the multi-action solution in Online Appendix H.1.
24See Lorenzoni (2009), Barsky and Sims (2012), and Angeletos and La’O (2010) among many others.
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We assume, further, that the signal process satisfies∫
xit = Aθt +B(L)vt,

for some matrices A and B(L). The assumption that A is constant helps isolate non-fundamental
driven fluctuations. In the equation above, vt represents aggregate shocks that are orthogonal to the
fundamental θt, but can shift agents’ expectations about it. Therefore, they may be interpreted as
sentiments or animal spirits. The information structure we have specified above includes most signal
processes used in the literature.

Proposition 5. The aggregate outcome is given by

yt = C(L)
(
Aθt +B(L)vt

)
,

where
C(L) ≡ G adj(I− (F−KHF)L) K

Πℓ
k=1(1− λkL)

,

K is the steady-state Kalman gain under the α-modified signal process, and {λk}ℓk=1 are the non-zero
eigenvalues of F−KHF.

Proof. See Appendix B.

This result sheds light on how information frictions can shape the dynamics of aggregate outcomes.
In the literature, Woodford (2002) and Angeletos and La’O (2010) use a guess-and-verify approach
to solve their models—with relatively simple signal processes—numerically. In contrast, a direct
application of the single-agent solution provides a formula that characterizes the dynamics for a
large class of signal and fundamental processes.

Consider first the response to a shock to the fundamental. Relative to θt itself, the aggregate outcome
exhibits additional dynamics captured by the term C(L). Generically, this extra term adds more
persistence, since relative to the fundamental, θt, the current outcome, yt, is further anchored by
its past realizations. Recall Example 1, where the aggregate outcome in equation (4.4) depends on
yt−1 besides θt, and this connection is intensified with higher complementarity or more information
frictions. Proposition 5 formalizes this idea for a general class of information processes. The linkage
with past outcomes is precisely determined by the eigenvalues of F−KHF.

Next, consider the response to sentiment shocks, vt. For simplicity, focus on the case in which
B(L) = B. The sentiment shocks inherit the same dynamic component as the fundamental, C(L).
Therefore, even when the sentiment shocks are not persistent themselves, they can have prolonged
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effects on the aggregate outcome. The persistence of sentiments explored in Angeletos and La’O
(2010) and Huo and Takayama (2017a) can be viewed as special cases of this proposition.

As a final remark, the additional dynamics of the aggregate outcome relative to the fundamental
can arise from the interaction between the persistence of the fundamental with noise, or from the
persistence of noise itself that confounds the learning about the fundamental. In an extreme case in
which the private noise shocks are correlated over time, aggregate outcomes may display persistent
fluctuations even when all the aggregate shocks are i.i.d.

5.2 Comparative Statics, Volatility, and GE Effects

In this sub-section, we show that the single-agent solution also facilitates obtaining predictions about
the volatility of the aggregate outcome and its covariance with fundamental. These results are derived
without imposing detailed assumptions on the information structure, and are, therefore, robust in
the sense used by Bergemann and Morris (2013) and Bergemann, Heumann, and Morris (2015).25

We consider two types of best response functions. The first type is the common-value best response
(CVBR), as described in equation (3.1). The second is a particular widely used independent-value
best response (IVBR), in which agents observe their individual fundamental, θit, perfectly,

yit = (1− α) θit + αEit[yt], (5.1)

but are unsure about the aggregate fundamental, given by θt ≡
∫
θit. The assumption that θit is

perfectly observable is a natural one if agents optimally allocate their limited cognitive resources.26

In this economy, the first-order uncertainty about their own payoff relevant fundamental is muted,
but higher-order uncertainty about the aggregate fundamental and outcome remains.

We establish the following comparative statics results.

Proposition 6. Suppose that Assumptions 1-3 are satisfied:

1. For CVBR with α ∈ (−1, 1) and IVBR with α > 0, the volatility of the aggregate outcome and
its covariance with the fundamental are decreasing in the degree of strategic complementarity,

∂Var(yt)

∂α
≤ 0, and ∂Cov(yt, θt)

∂α
≤ 0.

25Note that the beauty-contest model considered in this paper satisfies the ‘global stability under uncertainty’
condition specified in Weinstein and Yildiz (2007b), so that the maximum change in equilibrium actions, due to
changes in beliefs at orders higher than k, is exponentially decreasing in k. This property makes the robust predictions
possible. We thank Muhamet Yildiz and an anonymous referee for pointing this out.

26As in Maćkowiak and Wiederholt (2009), agents rationally choose to pay more attention to their individual funda-
mental shocks than to the aggregate shocks.
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2. For CVBR, if α > 0 (α < 0) the volatility of the aggregate outcome is lower (higher) than the
volatility of the average forecast of the fundamental,

Var (yt) ≤ Var
(
Et(θt)

)
, if α > 0, and Var (yt) ≥ Var

(
Et(θt)

)
, if α < 0.

3. For IVBR if α > 0 (α < 0) the volatility of the aggregate outcome is lower (higher) than the
volatility of the fundamental,

Var(yt) ≤ Var(θt), if α > 0, and Var(yt) ≥ Var(θt), if α < 0.

Proof. See Appendix C.

The results for the CVBR can be understood using the single-agent solution, which implies that
yt = Ẽt[θt]. With the modified signal process as α increases, the precision of private signals decreases,
and the forecast is less accurate. Therefore, the volatility of the average forecast decreases since
agents become less responsive to signals, and the covariance between the fundamental and its forecast
declines as well. Part 2 of the proposition follows directly from Part 1 by noticing that yt = Et[θt]

when α = 0.

Next, consider the IVBR case. From Proposition 3, the aggregate outcome is given by

yt = (1− α) θt + α Ẽt[θt]. (5.2)

The first term (1 − α) θt is associated with the agents’ response to their own fundamentals, which
can be interpreted as partial equilibrium (PE) effects, and the second term is the agents’ response
to others’ actions which can be interpreted as general equilibrium (GE) effects.27 A larger strategic
complementarity implies noisier private signals in the α-modified signal process, which attenuates the
response of Ẽt[θt] to changes in the fundamental. When α is positive, an increase in α also increases
the weight of the less responsive GE effects, Ẽt[θt], relative to the fundamental, θt, in equation (5.2).
This explains why the variance of the aggregate outcome and its covariance with the fundamental
decrease with α.

Part 3 for α > 0 follows from the fact that yt = θt when α = 0 and from the result in the Part 1. For
strategic substitutes, α < 0, information frictions amplify the volatility of the aggregate outcome.
To see why, rearrange equation (5.2) to obtain

yt = θt − α(θt − Ẽt[θt]).

27For a more detailed discussion of this interpretation, see Angeletos and Lian (2016a).
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Loosely speaking, θt is more responsive than the expectation of θt. With a negative α, it follows that
the aggregate outcome also becomes more responsive than the fundamental itself.28

Bergemann and Morris (2013) and Bergemann, Heumann, and Morris (2015) characterize com-
parative statics about the maximum volatility of the aggregate outcome. Exploiting properties of
correlated equilibria, their approach can be used to identify the boundary of the set of equilibria and
how it changes with the degree of strategic complementarity. Our results are substantially different
from theirs. First, in terms of comparative statics, we fix the underlying information structure when
varying α while the information structure that achieves the maximum volatility may vary with α

in those papers. Second, we compare the volatility of the aggregate outcome with that of the fun-
damental and its conditional expectation. Without the single-agent solution, analyzing this type of
equilibrium properties would require a case-by-case study for the information structure at hand. Us-
ing our result, this task boils down to analyzing statistical properties of a simple forecasting problem,
which allows the general statements made above.

5.3 Social Value of Public Information in Transition

In this section, we explore the transition dynamics of social welfare following a change in the precision
of public information. An interesting point made by Morris and Shin (2002) is that increasing the
precision of public information can reduce social welfare. Angeletos and Pavan (2007) discuss the
social value of information with a more general payoff structure. These studies focus on the static
case, while here we consider a dynamic fundamental. We first show that the result from Morris and
Shin (2002) is strengthened when the fundamental is more persistent. However, this is based on a
comparison between steady states, which can be misleading in dynamic settings. To make this point
clear, we provide an example in which, even though increasing the precision of public information is
eventually detrimental to welfare, welfare is improved for a long time during transition.

Consider a fundamental, θt, that follows an AR(1) process as in (2.8), and suppose that agents
observe a public and a private signal about it. Purposely, we allow the precision of the public signal
to change over time,

zt = θt + εt, and xit = θt + νit,

where εt ∼ N (0, τ−1
ε,t ), and νit ∼ N (0, τ−1

ν ). Before moving to the transition dynamics, we first
discuss the properties of the social value of information in the stationary case, i.e., with τε,t = τε.
We assume that the agents’ best response is given by equation (3.1), and that the (period) social
welfare function is Wt ≡ −

∫
(yit − θt)

2, so that it is optimal to keep all agents’ actions as close as
28For the CVBR, Angeletos and Lian (2016b) prove Part 1 of Proposition 6 under a particular static signal structure.

We generalize the signal process to allow for a larger class of dynamic information structures. With respect to Part 2,
Angeletos and Lian (2016b) show that Var(yt) ≤ Var (θt), while we obtain a tighter bound by comparing Var(yt) with
Var

(
Et(θt)

)
. In addition, we also explore properties of the IVBR, whereas that paper does not.
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Figure 2: Welfare Change in Steady State and Transition
Parameters (A & B): τη = 1, and α = 0.85; (B): τν = 0.3, and ρ = 0.95.

possible to the fundamental, θt. Using the equivalence result, it follows from Proposition 2 that we
can solve for the steady-state welfare analytically.29

To investigate under which conditions increasing the level of public information precision can reduce
steady state welfare, let τ̂ε be the precision that minimizes welfare,

τ̂ε ≡ min
τε

W.

It is straightforward to verify that ∂W/∂τε < 0 if and only if τε ∈ [0, τ̂ε). Figure 2A shows how τ̂ε

changes with the persistence ρ. Interestingly, as ρ increases, the welfare-reducing region becomes
larger.

However, this result can be misleading. When signals are persistent, following a change to the
precision of public information, the distribution of agents’ priors does not change immediately, and
the economy can experience a relatively long transition before it converges to the new steady state.
During this process, the dynamics of social welfare can reverse the steady state comparative statics.
Figure 2B shows welfare in the steady state for various values of τε. The U-shaped curve indicates
the existence of a welfare-reducing region. In our experiment, there is a permanent increase of the
precision of public signal at time t = 0. As depicted in the figure, an increase in τε induces a reduction
in steady-state welfare. However, if we look at the transition path towards the new steady state, the

29The formula for the steady-state welfare is given by

W =
τη((1− α)2 τν + τε) + κ2

(τε + (1− α) τν) ((τε + (1− α) τν) + 2κ) τη + (1− ρ2) τηκ2
, with κ =

τη (κ+ (τε + (1− α) τν))

κ+ (ρ2τη + τε + (1− α) τν)
.
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Figure 3: Welfare in Transition
Parameters: τη = 1, α = 0.85, τν = 0.3, ρ = 0.95, τε,0 = 0.001, and τε,t = 0.004, for t ≥ 1.

message is quite different. Figure 3 shows how welfare changes over time. For many periods welfare
is actually improved, and the magnitude of the improvement is larger than the eventual reduction.

Social welfare can be decomposed into

Wt = −
(

vt︸︷︷︸
Var(yit)

− 2ct︸︷︷︸
Cov(yit,θt)

+ ω︸︷︷︸
Var(θt)

)
.

The variance of θt is invariant, ω ≡ 1/(1−ρ2)τη, and, using Proposition 2, the dynamics of the other
components of welfare can be written recursively as

vt =
κ2t

(τt + κt)
2 ρ

2vt−1 +
2τtκt

(τt + κt)
2 ρ

2ct−1 +
τ2t

(τt + κt)
2ω +

τt − α (1− α) τν

(τt + κt)
2 , (5.3)

ct =
κt

τt + κt
ρ2ct−1 +

τt
τt + κt

ω, (5.4)

κt+1 =
τη (κt + τt+1)

κt + τt+1 + τηρ2
, (5.5)

with the trigger of the transition coming from the time-varying precision τt ≡ (1− α) τν + τε,t. The
system (5.3-5.5) captures the slow-moving nature of the social welfare. Agents’ forecasts rely on their
prior precision about the aggregate state (5.5), which is updated gradually due to Bayesian learning.
The variance of yit and its covariance with the fundamental depend on the precision of the prior, and
thus exhibit persistence as well. The different updating speeds of vt and ct allows welfare to increase
initially and decrease later on. The takeaway from this example is that the results derived from a
static setting may not readily extend to a dynamic setting since the slow-moving nature of agents’
behavior can induce non-trivial dynamics.
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6 Endogenous Information

So far, we have assumed that the signals follow exogenous stochastic processes, that is, that they are
independent of agents’ actions in equilibrium. In this section, we show that the single-agent solution
remains valid when the source of information is endogenous. To better simplify the exposition, we
focus here on stationary signal processes.

To include the possibility that agents can learn from endogenous aggregate variables, we consider
signal structures with the following form

xit = M(L)εit + p(L)yt. (6.1)

The first part M(L)εit captures the information that is exogenously specified, and the second part
p(L)yt allows the signal to be a function of the aggregate action yt. The informativeness of the
signal depends on the process of yt, which is determined endogenously in equilibrium.30 A natural
requirement is that agents can only learn from current and past aggregate actions, that is, p(L) is a
one-sided square-summable polynomial vector.

With endogenous signals, the equilibrium imposes an additional consistency requirement that the law
of motion for the aggregate action in the signals is consistent with that implied by agents’ actions.
We define the equilibrium in a way that highlights this requirement.

Definition 3. A linear Bayesian-Nash equilibrium with endogenous information is a policy rule
h (L) for agents and a law of motion H(L) for the aggregate action, such that

1. The individual action yit = h′(L)xit satisfies the best response (3.1), and the signal is given by
the following exogenous process:

xit = M(L)εit + p(L) H′(L)ηt. (6.2)

2. The aggregate action is consistent with individual actions: yt =
∫
yit.

3. The aggregate action is consistent with agents’ signals: yt = H′(L)ηt.

Condition 3 distinguishes an endogenous from an exogenous information equilibrium. It implies,
30Note that, in our setup, only the aggregate action enters the agents’ information sets and all agents behave

competitively. As a result, agents do not take into account the effect that their action might have on others’ information
sets.
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together with Condition 1, the cross-equation restriction

H′(L) = h′(L)

(
M(L)

[
Iu

0

]
+ p(L)H′(L)

)
, (6.3)

which is clearly a fixed point problem for H(L). We want to emphasize that given any H(L), the
signal structure of an individual agent is well defined by equation (6.2), and, for Conditions 1 and 2
to be satisfied, it must be an exogenous information equilibrium from Definition 1. Therefore, all of
our results from Section 4 still apply. If there exists a particular H(L) that also satisfies Condition
3, then it is an endogenous information equilibrium. We formalize this argument in the following
proposition:

Proposition 7. Under Assumptions 1-3, if h (L) and H(L) are an equilibrium from Definition 3,
then the policy rule h(L) satisfies

Ẽit[θt] = h′(L)x̃it.

where x̃it the α-modified signal process of xit, and the law of motion of the aggregate action H(L)

satisfies
yt = H′(L)ηt = Ẽt[θt].

The proof of this proposition follows from the observation that, if an endogenous information equi-
librium exists, each individual agent still regards their information process as exogenous.31 This
is due to the fact that all agents behave competitively and do not take into account the effects of
their action on the aggregate outcome. Hence, the policy rule is still the forecasting rule of the
fundamental with modified signals.

When computing these types of models, obtaining the signal process requires a recursive algorithm
that solves an exogenous information equilibrium in each iteration. This step can be efficiently
implemented via the single-agent solution. By the same logic, our single-agent solution can also
be extended to environments with an information acquisition choice (Hellwig and Veldkamp, 2009;
Maćkowiak and Wiederholt, 2009). Once all agents have chosen the precision of their signals in
equilibrium, they effectively receive signals as if the process for the signal is exogenously specified.32

7 Extensions

As mentioned in Section 3, the type of best response functions we have considered so far excludes
two possibilities: (1) heterogeneity among agents’ payoff and information structures; and (2) in-
tertemporal strategic complementarity. Though our single-agent solution does not apply exactly to

31Proposition 7 does not establish the existence of an equilibrium, but a property that an equilibrium must satisfy
if it exists.

32We provide an example to how to use Proposition 7 in Online Appendix H.2.
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these types of best response functions, we show that the basic insight still works for some relevant
applications.

7.1 Network: Heterogeneous Payoff and Information Structure

An assumption that has been maintained throughout the paper, up to this point, is that of ex-ante
symmetry between the agents. Though agents may experience different private shocks over time,
ex ante they have the same information structure and best response functions. In this section, we
extend our result to asymmetric settings where there are agents of different types. These asymmetries
lead to a network setup where agents depend on each other in different ways, and the information
structure can also differ from agent to agent.

Suppose that there are n different agents in the economy.33 Each agent has its own fundamental and
the agents’ actions can depend on each of the other agents actions. Abusing notation, we denote
Et = [E1t, · · · , Ent]

′. Then, the best response function can be written as34

yt = Et[θt] + Et[Wyt], (7.1)

where θt, and yt are n× 1 vectors, and W is an n×n matrix that summarizes the cross dependence
of agents’ payoffs on others’ actions, we call this the payoff matrix. The heterogeneity in the payoff
structure could be interpreted as the network structure in a network game. Moreover, one can also
relate this framework to macroeconomic models in which multiple groups of agents (such as firms
and households) with heterogeneous information interact with each other, as in Maćkowiak and
Wiederholt (2015) and Angeletos and Lian (2018).

With perfect information, the equilibrium outcome would be given by

yt = (I−W)−1 θt. (7.2)

The matrix (I−W)−1 is related to Katz-Bonacich centrality of the network, which appear in the
characterizations of equilibrium in De Martí and Zenou (2015) and Bergemann, Heumann, and Morris
(2017). We are interested in how this formula changes when information is incomplete.

33It can also be interpreted in a way that the economy has n group of agents, and there are a large number of
identical agents in each group.

34In more detail, y1t...
ynt

 =

E1t[θ1t]
...

Ent[θnt]

+


∑

j ̸=1 E1t[W1jyjt]
...∑

j ̸=n Ent[Wnjyjt]]

 .
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Information In period t, agent i observes a vector of signals35

xit = M(L)εit, (7.3)

where M(L) is common to all agents. The heterogeneous information structure is captured in the
covariance matrix of εit.

Assumption 5. The elements of εit are uncorrelated normal shocks. The covariance matrix of εit is
denoted by Σ2

i , where Σ2
i = diag

(
τ−1
1 , . . . , τ−1

m−1, γ
−1
i τ−1

m

)
, with the first m− 1 shocks being common

shocks and only the last one being private.36 Otherwise, M(L) satisfies Assumption 2 and each

θit =
[
ϕ′
i(L) 0

]
εit

satisfies Assumption 3.

The first m − 1 shocks are common shocks, which could drive fundamentals or serve as common
noise. The last shock is a private noise, and its variance is agent specific. This ex-ante heterogeneity
in agents’ information structures is absent in previous sections. We use the diagonal matrix Υ =

diag
(
γ−1
1 , . . . , γ−1

n

)
to summarize this heterogeneity.

In the multi-action setup from Section 4.1, the relevant modification of the signal process only
depends on the degree of strategic complementarity. With heterogeneous payoff and information
structures, the required modification is more involved and hinges on both W and Υ.

Assumption 6. The matrix (I−W)−1Υ is diagonalizable with

(I−W)−1Υ = Qdiag(γ̃−1
1 , . . . , γ̃−1

n ) Q−1

where γ̃−1
j is its j-th eigenvalue and the absolute values of all eigenvalues are less than one.

In a similar way to the multi-action analysis, we define the j-th network-modified signal process
to be

x̃jt = M (L) ε̃jt,

where the covariance matrix of ε̃jt is Σ̃2
j = diag

(
τ−1
1 , . . . , τ−1

m−1, γ̃
−1
j τ−1

m

)
. The modified precision

takes into account both the relative importance of the network linkages and the relative precision of
agents’ signals. These modified signals turn out to be sufficient to establish our single-agent solution.

35In Online Appendix F, we allow M(L) to depend on time t.
36The fact that agents are assumed to have only one private shock is made mostly for presentation purposes, the

assumption is relaxed in the proof presented in Online Appendix F.

33



Theorem 2. The forecast rule conditional on the j-th network modified signal process is defined as

Ẽ
[
θt| x̃t

j

]
= g′

j(L)x̃jt.

Under Assumptions 5 and 6, the equilibrium policy rule h(L) is given by37

h′(L) =
n∑

j=1

Qeje
′
jQ

−1(I−W)−1g′
j(L).

Proof. See Online Appendix F.

The solution in Theorem 2 modifies its perfect information counterpart (7.2) in two ways: first, the
fundamental θt is replaced by forecasts of the fundamental; second, the policy rule is a weighted
average of n different Katz-Bonacich centrality measures. This result is, unsurprisingly, more com-
plicated than the case in which all agents are symmetric. Instead of forming expectations about the
average expectations, agents need to keep track of the average of their neighbors’ expectations of the
average of their neighbors’ expectations of the fundamental, and so on.38 Incidentally, this is why the
proof does not follow directly from Corollary 2. Regardless, the main properties of the single-agent
solution are maintained. With this network structure, solving the equilibrium via the fixed point
approach is a very demanding task, as one needs to solve for n sets of policy rules. In contrast, our
single-agent solution remains tractable. Besides, it shows how the payoff and information structures
matter for the equilibrium in a transparent way.

In a similar, though static, setting, De Martí and Zenou (2015) and Bergemann, Heumann, and
Morris (2017) characterize the equilibrium by Katz-Bonacich centrality measures weighted by shocks
and covariances between fundamentals and signals, respectively. Our characterization extends to
dynamic information structures. Importantly, when information is persistent, agents naturally want
to keep track of the entire history of signals, which is an infinite-dimension object. By expressing
the policy rule in terms of finite forecasts of the fundamental, one can utilize the Kalman filter and
derive the policy rule recursively. We think this tractability will be useful for applied work.

We conclude this section by providing an example to show how the network structure interacts with
incomplete information.

Example 2. Consider a ring network. The length of the network or the number of agents is n.
Assume that in the network, only agent 1 cares about the fundamental θt directly and all other

37As a corollary it follows that the equilibrium exists and is unique.
38By iteration on equation (7.1), we obtain yt =

∑∞
k=0 E

k
t [WEt[θt]] where the higher-order expectations Ek

t [WEt[θt]]

are defined recursively as E0
t [WEt[θt]] = Et[θt], and Ek

t [WEt[θt]] = Et[WEk−1
t [θt]].
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agents only care about the previous agent’s action. The best response functions are given by

yit =

{
(1− α)E1t[θt] + αE1t[ynt], i = 1

Eit[yi−1,t], i > 1

The corresponding W matrix, which we present next to a diagram of the network structure, is given
by

W =


0 0 · · · α

1 0 · · · 0
... . . . · · ·

...
0 · · · 1 0

 3

2

1

θ

n

· · ·

α

1− α
1

1
1

1

Suppose, further, that the fundamental, θt, follows a random walk, and that, every period, each
agent observes a private signal about the fundamental,

xit = θt + νit, νit ∼ N (0, (γiτν)
−1).

Note that the precision is agent specific.

With perfect information, it is easy to verify that agents’ actions are independent of their position
in the network, and all the responses are simply equal to the fundamental itself, yit = θt.

In contrast, the network structure matters a lot when information is incomplete. First, consider
the case in which γi = 1 for all i. If α = 0, agent 1’s action is equal to the first-order expectation
about the fundamental, agent 2’s action is equal to the second-order expectation, and, by induction,
agent n’s action is equal to the n-th order expectation. Clearly, an agent’s position in the network
shapes their reaction. The further away an agent is from agent 1, the deeper the depth of reasoning
required. When α ̸= 0, agent 1 also cares about agent n’s expectations, and all the higher-order
expectations start to play a role. However, the extent to which a particular higher-order expectation
matters depends on the length of the network. In particular,

yit = (1− α)Eit

[
Ei−1
t [θt]

]
+ (1− α)

∞∑
k=1

αkEit

[
Enk+i−1
t [θt]

]
, for i ∈ 1, . . . , n.

Note that, with a larger n, the weight on higher-order expectations increases as agents have to think
through more layers of others’ expectations. Figure 4A shows the impulse responses to a fundamental
shock. Clearly, as the length of the network increases from n = 5 to n = 50, the outcome becomes
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more dampened and more persistent. A higher n brings the outcome closer to expectations of higher
order.
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(A) Varying the length of the ring
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(B) Varying the precision of the n-th agent

Figure 4: Impuse Responses for a Ring Network with Incomplete Information
Parameters (A & B): τη = τν = γi = 1, and α = 0.9; (B): n = 50.

In Figure 4B we consider another experiment. We fix the length of the network to be n = 50.
Instead of setting γi = 1 for all agents, we lower the precision of the n-th agent by setting γn = 0.01.
Even though all other agents still have relatively accurate forecasts about the fundamental, a strong
coordination motive makes them reluctant to respond in order to behave similarly to the n-th agent,
which has the most dampened response. Given the large number of agents in the network, it is
interesting to notice how much the change in precision of only one agent affects the action of all
other agents. This pattern is similar to the tyranny of the least informed discussed in Golub and
Morris (2017)—here we see its dynamic effects.

7.2 Beyond Static Beauty-Contest Model

So far, we have focused on beauty-contest models with static strategic complementarity, where an
agent’s action only depends on others’ actions within the same period. This is the most extensively
studied case in the literature on dispersed information, but there is a growing interest in under-
standing properties of beauty-contest models with intertemporal strategic complementarities. In
this subsection, we consider the following best response function in which agents also care about the
future aggregate action,

yit = γEit [θt] + αEit[yt] + βEit [yt+1] . (7.4)

This specification is similar to Allen, Morris, and Shin (2006), Nimark (2017), Rondina and Walker
(2018), Angeletos and Lian (2018). It arises when agents need to make intertemporal decisions,
such as the consumers’ Euler equation, the New Keynesian Phillips curve, or asset pricing equations.
Angeletos and Huo (2018) obtain the solution to a similar forward-looking model. Here, we focus on
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its equivalence to a single-agent problem and provide the appropriate transformation to the signal
process.

We assume that agents receive a public and a private signal

zt = θt + εt, and xit = θt + νit,

where εt ∼ N (0, τ−1
ε ), and νit ∼ N (0, τ−1

ν ). Suppose that the fundamental θt follows an AR(1)
process as in (2.8) with ηt ∼ N (0, 1). The information set of agent i at time t is It = {zt, xti}. Also,
normalize γ ≡ 1− α− ρβ, such that the perfect information solution is simply yt = θt.

In the simple forecasting problem, we have that

Eit[θt] =
λ

ρ(1− ρλ)

τεzt + τνxit
1− λL

, (7.5)

where the weights on the signals are proportional to their precision and λ is given by a function Λ

of the precision of the signals, and of the persistence of the fundamental,

λ ≡ Λ(τε, τν , ρ) ≡
1

2

τε + τν
ρ

+
1

ρ
+ ρ−

√(
τε + τν
ρ

+
1

ρ
+ ρ

)2

− 4

 .

Proposition 8. Suppose
∣∣∣ β
1−α

∣∣∣ < 1. Then, the policy rule in equilibrium is given by

yit =
λ̃

ρ(1− ρλ̃)

τεzt + τ̃νxit

1− λ̃L
. (7.6)

The modified precision of the private signal, τ̃ν , and the persistence, λ̃, are jointly determined by the
system

τ̃ν ≡ (1− α− λ̃β)τν , and λ̃ ≡ Λ(τε, τ̃ν , ρ).

Proof. See Online Appendix G.39

Comparing equations (7.5) and (7.6), one can see that, in this forward-looking beauty-contest model,
the policy rule is still equivalent to a pure forecasting problem with a modified signal process that
can be interpreted as a single-agent solution. The key difference is in how the signal is modified.
When β = 0, the solution collapses to the one in our baseline case without forward-looking behavior,

39See the remark at the end of Appendix A for a discussion of why the proof strategy applied in Theorem 1 cannot
be applied when there are dynamic complementarities. This is why the proof of Proposition 8 is different and more
involved.
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and the precision is simply discounted by the degree of static complementarity, that is τ̃ν = (1−α)τν .
When β ̸= 0, the modification is more involved as it requires solving a nonlinear equation,

τ̃ν ≡ (1− α− Λ(τε, τ̃ν , ρ)β) τν .

The higher-order expectations, in this case, involve forecasts that take place across different horizons
since agents need to forecast how others think about the fundamental tomorrow, how others think
about how others think about the fundamental the day after tomorrow, and so on. The required
discounting is, therefore, not just the intertemporal complementarity, because an adjustment is
necessary to capture the effects of the anticipation of learning by other agents in the future as well.
In any case, the basic insight that the equilibrium policy rule is akin to a pure forecasting of the
fundamental with a discounted precision of private signals remains true.40

More generally, the best response function could be written as

yit = γEit [θt] + Eit[g(L)yt],

where g(L) is a two-sided polynomial in L. The best response (3.1) corresponds to g(L) = α, and
the best response (7.4) corresponds to g(L) = α + βL−1, which are two common cases discussed
in the literature. Despite the simplicity of our single-agent solution, it is subject to the limitation
that it may not work for general g(L). Notice that Proposition 8 holds when there are forward-
looking complementarities and the fundamental follows an AR(1) process. Alternatively, if there are
backward-looking complementarities or if the fundamental follows a more complicated process, the
result may not hold. We provide an example of this kind in Online Appendix G.6.41 This helps draw
a limit to our results, though the single-agent solution could still serve as a good approximation for
the exact equilibrium dynamics in those cases.

8 Conclusion

This paper establishes the equivalence between the equilibrium of beauty-contest models and the
solution to a single-agent forecasting problem with a modified signal process. We have shown that
the policy rule in the latter also solves the former. What makes our single-agent solution powerful
is the fact that the required modification of the signal structure takes a simple form and that it
works for a general class of information structures. This allows us to explore general properties of
beauty-contest models and makes it suitable for quantitative applications. We extend this result to
models with multiple actions and to network games.

40Differently from the static beauty-contest model in which the single-agent solution works for essentially all linear
signal processes, the type of single-agent solution in Proposition 8 may not generalize to more arbitrary signal processes.

41This example includes backward-looking complementarity, which can result, for instance, from an environment
with endogenous capital accumulation.

38



We believe the methods developed in this paper can potentially be applied to explore many interesting
questions. For example, with incomplete information, how do the GE attenuation effects change
when market concentration increases? How does the persistence of inflation change when monetary
policy becomes more or less aggressive? How does information dispersion affect the propagation
mechanism for sectoral shocks in an economy with input-output linkages? The guess-and-verify
approach or the numerical approximation methods commonly used in the literature, to some extent,
limit the understanding and applicability of dispersed information models. We hope that our results
can help overcome these limitations.
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Appendix

A Proof of Theorem 1

The proof is presented as a series of lemmas and propositions. In Section A.1 we show that the forecasting
problem set up in Section 3 is equivalent to a limit of a truncated version of it. Section A.2 sets up and
solves a static forecasting problem equivalent to the truncated version. Section A.3 presents and solves the
associated fixed point problem that gives the equilibrium of a beauty-contest problem; in it, we also establish
the existence, uniqueness, and linearity of the equilibrium. Section A.4 describes the α-modified signal process
and Section A.5 proves the equivalence between the policy function of the solution to the static version of the
forecasting problem with the α-modified signal process and the solution to the fixed point problem.

A.1 Limit of Truncated Forecasting Problem

Fix t. Section 3 sets up the problem of forecasting θt given xt
i ≡ {xit,xit−1, . . .}. For ease of notation, from

now on we suppress the dependence on t and i. Notice that each element of θ and x can be represented as an
MA(∞) process and that there is an infinite history of signals.

Consider a truncated version of this problem.42 Let θq be the MA(q) truncation of θ, that is,

θ =

∞∑
k=0

ϕkηt−k ⇒ θq =

q∑
k=0

ϕkηt−k.

Let x(N) ≡ {xit, . . . ,xit−N} and let each element of x
(N)
p be the MA(p) truncation of the corresponding

element of x(N). The next proposition shows that the limit as q, p, and N go to infinity of the forecast of θq
given x

(N)
p is equivalent to the forecast of θ given x. Throughout, the concept of convergence between random

variables is mean square. For example, we can say that limq→∞ θq = θ, since

lim
q→∞

E
[
(θ − θq)

2
]
= lim

q→∞
E

(θ − q∑
k=0

ϕkηt−k

)2
 = lim

q→∞

∞∑
k=q+1

ϕkE[η2
t−k]ϕ

′
k = 0,

where the last equality is due to the assumption that ϕ(L) is square summable and that E[η2
t−k] is finite.

Proposition 9. E [θ|x] = limp,q,N→∞ E
[
θq|x(N)

p

]
.

Proof. The strategy is to establish the following equalities

E [θ|x] [3]= lim
p→∞

E [θ|xp]
[2]
= lim

p→∞
lim

N→∞
E
[
θ|x(N)

p

]
[1]
= lim

p→∞
lim

N→∞
lim
q→∞

E
[
θq|x(N)

p

]
.

We start from the last and move to the first.
42Note that in this truncation, we do not assume shocks become public after a certain number of periods, differently

from the common assumption made in the literature (e.g. Townsend (1983)).
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[1]: To show that
E
[
θ | x(N)

p

]
= lim

q→∞
E
[
θq|x(N)

p

]
,

note that there exists K large enough such that, for any k > K,

E
[
ηt−k | x(N)

p

]
= 0.

It follows that

E
[
θ | x(N)

p

]
= E

[
K∑

k=0

ϕkηt−k +

∞∑
k=K+1

ϕkηt−k | x(N)
p

]
= E

[
K∑

k=0

ϕkηt−k | x(N)
p

]
= E

[
θK |x(N)

p

]
,

and

lim
q→∞

E
[
θq|x(N)

p

]
= lim

q→∞
E

[
K∑

k=0

ϕkε−k +

q∑
k=K+1

ϕkε−k | x(N)
p

]
= lim

q→∞
E
[
θK |x(N)

p

]
= E

[
θK |x(N)

p

]
.

[2]: Next, to show that
E[θ|xp] = lim

N→∞
E
[
θ|x(N)

p

]
,

we simply need to establish that the limit on the right hand side exists. First notice that forecast errors are
decreasing in the number of signals and that the stationarity of θ guarantees that the mean squared error is
well defined, which implies that

0 ≤ E
[(
θ − E

[
θ|x(N+1)

p

])2]
≤ E

[(
θ − E

[
θ|x(N)

p

])2]
.

Therefore, there exists σ2 such that

lim
N→∞

E
[(
θ − E

[
θ|x(N)

p

])2]
= σ2.

Moreover, for any N1, N2,

E


θ − E

[
θ|x(N1)

p

]
+ E

[
θ|x(N2)

p

]
2

2
 ≥ σ2.

It follows that

E
[(

E
[
θ|x(N1)

p

]
− E

[
θ|x(N2)

p

])2]

= 2E
[(
θ − E

[
θ|x(N1)

p

])2]
+ 2E

[(
θ − E

[
θ|x(N2)

p

])2]
− 4E


θ − E

[
θ|x(N1)

p

]
+ E

[
θ|x(N2)

p

]
2

2


≤ 2E
[(
θ − E

[
θ|x(N1)

p

])2]
+ 2E

[(
θ − E

[
θ|x(N2)

p

])2]
− 4σ2.
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In the limit, the right-hand side converges to zero, and therefore

lim
N→∞

E
[
θ|x(N)

p

]
is indeed well defined.

[3]: By the Winner-Hopf prediction formula, it follows that

E[θ|x] = [ϕ(L)M′(L−1)B′(L−1)−1]+B(L)−1x ≡ D(L)ε,

E[θ|xp] = [ϕ(L)M′
p(L

−1)B′
p(L

−1)−1]+Bp(L)
−1xp ≡ Dp(L)ε.

where B(z) and Bp(z) are the corresponding fundamental representations of M(z) and Mp(z), respectively.
The mean-squared difference between these forecasts is

E
[
(E[θ|x]− E[θ|xp])

2
]
=

∞∑
k=0

(Dt−k −Dp,t−k)Σ
2(Dt−k −Dp,t−k)

′.

If limp→∞ Dp(z) = D(z), then limp→∞ E
[
(E[θ|x]− E[θ|xp])

2
]
= 0. First, by construction,

M(z) = lim
p→∞

p∑
k=0

Mkz
k = lim

p→∞
Mp(z).

Second, given a signal process Mp(z), its corresponding fundamental representation of Bp(z) is uniquely
determined when the covariance matrix of the fundamental innovation is normalized, and satisfies

Bp(z)B
′
p(z

−1) = Mp(z)M
′
p(z

−1).

As a result,
B(z) = lim

p→∞
Bp(z).

Then, by continuity of the annihilation operator, it follows that

lim
p→∞

Dp(z) = D(z).

A.2 Static Forecasting Problem

For the sake of simplicity, from this point on, we suppress the dependence on the indexes used in the limits
above and rewrite the truncated forecasting problem as a static problem. We also continue to suppress the
dependence on t, unless any ambiguity may arise, but bring back the dependence on i.
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Define

εi ≡

[
η

νi

]
, η ≡


ηt
...

ηt−max{q,p}−N

 , νi ≡


νit
...

νit−max{q,p}−N

 ,
and notice that, there exists a u(q+1)×1 vector a and a r(N+1)×M matrix B, withM ≡ m(max{q, p}+N+2),
such that the forecasting problem at time t becomes that of forecasting

θ =
[
a′ 0′

]
εi = a′η, given xi = Bεi = B

[
η

νi

]
.

Let Ω2 denote the covariance matrix of εi, let A ≡
[
a′ 0′

]
, and let Λ be the M ×M matrix given by

Λ ≡

[
IU 0

0 0

]
,

where U ≡ u(max{q, p}+N + 2). It follows that

E[θ | xi] = A′ΩΛΩB′ (BΩ2B′)−1
xi.

It is convenient for what follows to write the forecast in this way. To obtain this formula we use, in particular,
the fact that A′ = A′Λ and that ΛΩ = ΩΛ.

A.3 Fixed Point Problem

Suppose we also want to forecast y. We do not know the stochastic process for y, so let h denote the agent’s
equilibrium policy function, i.e. yi = h′xi, then

y =

∫
h′xi = h′BΛεi.

Then, the forecast of y is given by

E[y | xi] = h′BΩΛΩB′ (BΩ2B′)−1
xi.

In equilibrium, we have that
yi = (1− α)E[θ | xi] + αE[y | xi],

and, therefore

h′xi =
[
(1− α)A′ΩΛΩB′ (BΩ2B′)−1

+ αh′BΩΛΩB′ (BΩ2B′)−1
]
xi.

It follows from the fact that equation above holds for any xi that

h = C−1d, (A.1)
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where

C ≡ I− α
(
BΩ2B′)−1

BΩΛΩB′, (A.2)

d ≡ (1− α)
(
BΩ2B′)−1

BΩΛΩA. (A.3)

Lemma A.1. C is invertible.

Proof. We start by showing that M ≡
(
BΩ2B′)−1

BΩΛΩB′ has real eigenvalues in [0, 1]. First notice that
M has real, non-negative eigenvalues since it is similar to

(BΩ2B′)1/2M(BΩ2B′)−1/2 = (BΩ2B′)1/2(BΩ2B′)−1(BΩΛΩB′)(BΩ2B′)−1/2

= (BΩ2B′)−1/2(BΩΛΩB′)(BΩ2B′)−1/2

which is positive semidefinite. On the other hand,

I−M =
(
BΩ2B′)−1

BΩ(I−Λ)ΩB′,

which, analogously to M, is also similar to a positive semidefinite matrix. If λ is an eigenvalue of M, then
1 − λ is an eigenvalue of I −M. Therefore, the fact that the eigenvalues of I −M are positive implies that
the eigenvalues of M must be less than or equal to 1, as desired. It follows that S ≡

∑∞
j=0(αM)j converges,

and S(I− αM) = I.

In particular, it follows from this lemma that there exists a unique equilibrium to the beauty-contest model.
It also follows that the equilibrium actions of an agent are linear functions of their signals.43

A.4 α-Modified Signal Process and Prediction Formula

Define Γ to be the M ×M matrix given by

Γ ≡

[
IU 0

0 1√
1−α

IM−U

]
,

and suppose that the signals observed by agent i are a α-modified version of xi given by

x̃i = Bε̃i, with ε̃i ≡ Γεi.

It follows that
Ẽ[θ | x̃i] = A′ΩΛΩB′ (BΩΓ2ΩB′)−1

x̃i. (A.4)
43In the arguments made above we have implicitly used the well known result that the optimal forecast for Gaussian

processes is linear, see Hamilton (1994) Section 4.6 for a formal proof.
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A.5 Equivalence Result

Proposition 10 establishes that the right hand side of equation terms in equation (A.1) is to the right hand
side of equation (A.4), which completes the proof of Theorem 1.

Proposition 10. Using the definitions above, it follows that

C−1d =
(
BΩΓ2ΩB′)−1

BΩΛΩA.

Proof. From the definition of C, equation (A.2), we obtain

C = I− α
(
BΩ2B′)−1

BΩΛΩB′

=
(
BΩ2B′)−1

BΩ(I− αΛ)ΩB′.

Thus, since
I− αΛ = (1− α)Γ2,

it follows that
C = (1− α)

(
BΩ2B′)−1

BΩΓ2ΩB′.

Finally, using Lemma A.1 and equation (A.3),

C−1d =
[
(1− α)

(
BΩ2B′)−1

BΩΓ2ΩB′
]−1

(1− α)
(
BΩ2B′)−1

BΩΛΩA

= (BΩΓ2ΩB′)−1
(
BΩ2B′) (BΩ2B′)−1

BΩΛΩA

= (BΩΓ2ΩB′)−1BΩΛΩA.

Remark It is crucial for the proof to work that the matrix I−αΛ is real, symmetric and positive semidefinite
so that it can be interpreted as a covariance matrix. When there are forward-looking or backward-looking
strategic complementarities this is in general not the case. This does not mean that a transformation to
the information structure that yields an equivalence result cannot exist with dynamic complementarities, but
simply that this particular proof strategy is not suitable in those cases. See, for instance, Proposition 8.

B Proof of Proposition 5

Proof. By Proposition 2, the individual action can be written as

yit = Gzit,

where

zit = (I−KH)Fzit−1 +Kxit = (I− (F−KHF)L)−1Kxit,
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and K is the steady state Kalman gain matrix with α-modified signals. Note that by Cramer’s rule,

(I− (F−KHF)L)−1 =
adj(I− (F−KHF)L)

det(I− (F−KHF)L)
=

adj(I− (F−KHF)L)

Πℓ
k=1(1− λkL)

,

where {λk}ℓk=1 are non-zero eigenvalues of (F − KHF). Let r denote the dimension of F, the last equality
follows from the fact that

det (I− (F−KHF)L) = Lr det
(
IL−1 − (F−KHF)

)
= LrL−(r−ℓ)

ℓ∏
k=1

(
L−1 − λk

)
=

ℓ∏
k=1

(1− λkL) .

The aggregate outcome yt then follows

yt =

∫
yit = C(L)

∫
xit = C(L)

(
Aθt +B(L)vt

)
.

C Variance and Covariance of Average Forecast

Let Ω = diag(σ1, . . . , σM ), and I ≡ {U +1, . . . ,M} be the σ-indexes associated with the idiosyncratic shocks
νi. Also, let ej be the j-th column of the M ×M identity matrix and let E[θ] ≡

∫
E[θ | xi].

Increasing the variance of any element of νi does not affect θ, but makes the signals xi noisier which, in turn,
makes the forecast less accurate. This implies that the forecast reacts less to signals and, as a result, it is less
volatile. It also implies that it is less correlated with the actual θ. This motivates the following lemmas.

Lemma C.1. The variance Var(E[θ]) is decreasing in how noisy the signals are,

∂Var(E[θ])
∂σ2

j

≤ 0, for j ∈ I.

Proof. First notice that

Var(E[θ]) = A′Ω2B′ (BΩ2B′)−1
BΩΛΩB′ (BΩ2B′)−1

BΩ2A.

For any j ∈ I, A′Ω2 and ΩΛΩ do not depend on σ2
j , and therefore, taking derivatives yields

∂Var(E[θ])
∂σ2

j

=− σ2
jA

′Ω2B′ (BΩ2B′)−1
[ (

Beje
′
jB

′) (BΩ2B′)−1
BΩΛΩB′+

+BΩΛΩB′ (BΩ2B′)−1 (
Beje

′
jB

′) ] (BΩ2B′)−1
BΩ2A.

The matrix in the inner bracket is symmetric, so let LL′ denote its Cholesky decomposition. Then, letting
z ≡ A′Ω2B′ (BΩ2B′)−1

L, the right hand side is equal to −σ2
j zz

′, which is less than or equal to 0.
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Lemma C.2. The covariance Cov(θ,E[θ]) is decreasing in how noisy the signals are,

∂Cov(θ,E[θ])
∂σ2

j

≤ 0, for j ∈ I.

Proof. First notice that

Cov(θ,E[θ]) = A′ΩΛΩB′ (BΩ2B′)−1
BΩ2A.

For any j ∈ I, A′Ω2 does not depend on σ2
j , and A′ΩΛΩ = A′Ω2, therefore

∂Cov(θ,E[θ])
∂σ2

j

= −A′Ω2B′ (BΩ2B′)−1 (
Beje

′
jB

′) (BΩ2B′)−1
BΩ2A.

Finally, letting z ≡ A′Ω2B′ (BΩ2B′)−1
Bej , the right hand side of this equation can be written as −zz′

which is less than or equal to 0.

For the following proofs we denote Ẽ[θ] ≡
∫
E[θ | x̃i], where x̃i is the modified signal defined in Section A.4.

C.1 Proof of Proposition 6 for the Common-Value Best Response

Proof. In the static version of the problem, under Assumptions 1-3 and with the best response given by

yi = (1− α)Ei[θ] + αEi[y],

it follows from Corollary 1 that
y = Ẽ[θ],

which is equivalent to E[θ] with the variance of the idiosyncratic shocks discounted by α, that is with σ̃2
j =

σ2
j /(1 − α) for all j ∈ I. Hence, an increase in α is equivalent to an increase in the variance of all the

idiosyncratic shocks. Thus, Part 1 in Proposition 6 for the CVBR follows from Lemmas C.1 and C.2. Part 2
follows directly from Lemma C.1 and the fact that y = E[θ] when α = 0. Finally, it follows from Proposition
9 that these results generalize to the setting in Proposition 6 by a continuity argument.

C.2 Proof of Proposition 6 for the Independent-Value Best Response

Proof. With the best response given by

yi = (1− α)θi + αEi[y],

it follows from Proposition 3 that
y = (1− α)θ + αẼ[θ].
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Notice that
Var(y) = (1− α)2Var(θ) + α2Var(Ẽ[θ]) + 2α(1− α)Cov(θ, Ẽ[θ]).

Then, using the law of total variance and Lemmas C.1 and C.2, it follows that, if α > 0,

∂Var(y)

∂α
=− 2(1− α)Var(θ) + 2αVar(Ẽ[θ]) + 2(1− 2α)Cov(θ, Ẽ[θ])

+ α2 ∂Var(Ẽ[θ])
∂α

+ 2α(1− α)
∂Cov(Ẽ[y], θ)

∂α

≤− 2(1− α)Var(θ) + 2αVar(θ) + 2(1− 2α)Var(θ) = 0.

Similarly,
Cov(y, θ) = (1− α)Var(θ) + αCov(θ, Ẽ[θ]),

and if α > 0,

∂Cov(y, θ)

∂α
= −Var(θ) + Cov(θ, Ẽ[θ]) + α

∂Cov(Ẽ[y], θ)
∂α

≤ −Var(θ) + Var(θ) = 0.

This establishes Part 1 for IVBR. Part 3 for α > 0 follows from the fact that yt = θt when α = 0 and the
result in Part 1. Finally, we can also write the aggregate action y as

y = θ + α(Ẽ[θ]− θ).

and it follows that
Var(y) = Var(θ) + α2Var(Ẽ[θ]− θ) + 2αCov(θ, Ẽ[θ]− θ).

To show that, for α < 0, Var(y) ≥ Var(θ), it is sufficient to show that Cov(θ, Ẽ[θ]− θ) ≤ 0. Note that

Cov(θ, Ẽ[θ]− θ) = Cov(θ, Ẽ[θ])−Var(θ) ≤ 0.

Proposition 9 implies that these results generalize to the setting in Proposition 6 by continuity.

D Proofs for Generalized Best Response and Multiple Actions

This appendix contains the proofs for the extensions to generalized best responses and multiple actions from
Section 4.3.

D.1 Proof of Proposition 3

Proof. Iterating on the best response function in equation (4.5) we obtain

yit = γ(φt + ξit) + αγ

∞∑
k=0

αk Eit

[
Ek

t

[
φt

]]
.
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By Corollary 2, the infinite sum of higher-order expectations can be rewritten as a first-order expectation

yit = γ(φt + ξit) +
αγ

1− α
h′
t(L)xit.

D.2 Proof of Proposition 4

Proof. Iterating on equation (4.6) leads to

yit =

∞∑
k=0

AkEit

[
Ek

t [θt]
]
.

Then, notice that for any k ∈ {0, 1, 2, . . .},

Ak = QΩkQ−1 =

n∑
j=1

Qeje
′
jQ

−1αk
j .

Therefore, yit can be written as

yit =

n∑
j=1

Qeje
′
jQ

−1
∞∑
k=0

αk
jEit

[
Ek

t [θt]
]
.

From Corollary 2 we have that each row of
∑∞

k=0 α
k
jEit

[
Ek

t [θt]
]

is equal to the corresponding row of (1 −
αj)

−1g′
jt(L)xit and it follows that

yit =

n∑
j=1

Qeje
′
j(1− αj)

−1Q−1g′
jt(L)xit =

n∑
j=1

Qeje
′
j (I−Ω)

−1
Q−1g′

jt(L)xit,

and the fact that (I−Ω)
−1

Q−1 = Q−1 (I−A)
−1 concludes the proof.
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ONLINE APPENDIX: NOT FOR PUBLICATION

E Example Economies

In this appendix, we describe two different economic environments that have equilibria that can be summarized
by a system of equations with a best response equation and an aggregation equation of the kind we work with
in the paper.

E.1 Monetary Model with Dispersed Information

In this section, we describe a simple monetary model with information frictions; it is a version of the model
in Woodford (2002). A representative household has period utility given by

U(Ct, Nt) =
C1−σ

t

1− σ
− χ

N1+κ
t

1 + κ

where Nt denotes their labor supply and Ct is their consumption of a composite good defined to be the CES
aggregator of a continuum of differentiated goods,

Ct =

(∫
C

η−1
η

it

) η
η−1

.

The demand for good i and supply of labor in period t are given by

Cit =

(
Pit

Pt

)−η

Ct, and Nt =

(
Wt

χPtCσ
t

) 1
κ

, with Pt ≡
(∫

P 1−η
it

) 1
1−η

,

and where Wt denotes the wage. There is continuum of firms, each producing one of the differentiated goods
with the following production function,

Cit = ANε
it.

Firms have private information about the state of the world and, in period t, solve

max
Pit,Cit,Nit

Eit[PitCit −WtNit], subject to Cit =

(
Pit

Pt

)−η

Ct, and Cit = AtN
ε
it.

It follows that

Pit =
η

η − 1

Eit

[
WtC

1−ε
ε

it

]
εA

1
ε

.

Nominal GDP is determined exogenously by a monetary shock, Θt, so that

PtCt = Θt.
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Using this equation and the household’s optimality conditions we obtain

Pit =

(
χη

A
1
ε ε (η − 1)

) ε
η+ε(1−η)

Eit

[
Θ

(σ−1)ε+1
η+ε(1−η)

t P
1− (σ−1)ε+1

η+ε(1−η)

t N
κε

η+ε(1−η)

t

]
.

Let lower-case variables denote log-deviations from steady state. Integrating the production function we obtain
as first order approximation (which is exact if all shocks are log-normal) that ct = εnt, and it follows that

pit = (1− α)Eit[θt] + αEit[pt], with pt =

∫
pit,

and the degree of strategic complementarity given by

α ≡ (1− ε) (η − 1) + ε (1− σ)− κ

η + ε(1− η)
.

E.2 Business Cycles Model

In this section, we describe a stylized real business cycle model with information frictions, a simplified version
of the model in Angeletos and La’O (2010).

Environment There is a continuum of islands indexed by i in the economy. In each island lives a repre-
sentative agent who specializes in producing differentiated good i. Each period, agent i consumes Cijt of the
good produced on island j, and Cit is the CES aggregator of agent i’s consumption of all goods,

Cit =

(∫
j

C
η−1
η

ijt

) η
η−1

.

The production technology is
Yit = ΘitN

ε
it,

where ηit is the productivity level on island i in period t, and Nit denotes the labor input by agent i. The
period utility of agent i is given by

U(Cit, Nit) =
C1−σ

it

1− σ
− N1+κ

it

1 + κ
.

Each period has two stages: In the first stage, agents decide how much to produce, that is, choose Nit which
determines Yit, conditional on their information about the island-specific productivity and aggregate output.
In the second stage, taking prices and Yit as given, they choose how much to consume of each good, i.e.,
(Cijt)j , subject to the budget constraint ∫

j

PjtCijt = PitYit,

where Pjt is the price of the good produced on island j. Trading, in this second stage, occurs in a centralized
market. In the first stage, agents have to decide how much to produce before the goods market opens, and
therefore they have to forecast aggregate output to infer the price of their own goods. We allow agents to have
different information sets which include their own productivity Θit, but otherwise, we remain agnostic about
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the information structure.

Equilibrium Characterization Beginning with second stage, the optimal demand of the representative
agent i for the good from island j whose price is Pjt is given by

Cijt = Cit

(
Pjt

Pt

)−η

, where Pt ≡
(∫

P 1−η
jt

) 1
1−η

.

Together with the budget constraint and market clearing condition
∫
i
Cijt = Yjt, it follows that

Cit = Y
1
η

t Y
η−1
η

it where Yt ≡
(∫

Y
η−1
η

jt

) η
η−1

,

that is, the consumption of island i is a weighted geometric mean of the aggregate output and the output
produced in the island. Using this equation and the production function the first-stage problem becomes

max
Yit

Eit

[
1

1− σ

(
Y

1
η

t Y
η−1
η

it

)1−σ

− 1

1 + κ

(
Yit
Θit

) 1+κ
ε

]
.

which implies

Yit =

(
ε
η − 1

η
Θ

1+κ
ε

it Eit

[
Y

1−σ
η

t

]) εη
η(1+κ)+ε(1−η)(1−σ)

.

Letting lower-case letters denote log-deviations from steady state, it follows that

yit = γθit + αEit[yt], with yt =

∫
yit,

and the following definitions

α ≡ ε (1− σ)

η (1 + κ) + ε (1− η) (1− σ)
, and γ ≡ α

η(1 + κ)

ε(1− σ)
.

This type of best response function is analyzed in Section 4.3.
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F Proof of Theorem 2

The proof is presented as a series of lemmas and propositions. An analogous argument to the one made in
Section A.1 holds so that, if we prove the result for an arbitrary static information structure, the result follows.
Section F.1 sets up and solves the aforementioned arbitrary static forecasting problem. Section F.2 presents
and solves the associated fixed point problem that gives the equilibrium of a beauty-contest problem. Section
F.3 describes the modified signal process and Section F.4 proves the equivalence between the policy function of
the solution to the static version of the forecasting problem with the modified signal process and the solution
to the fixed point problem.

F.1 Setup with Static Information Structure

Best response function The best response function is

y = E[θ] + E[Wy],

where y is a vector of individual actions

y ≡
[
y1 y2 · · · yn

]′
,

θ is a vector of exogenous variables
θ ≡

[
θ1 θ2 · · · θn

]′
,

and the expectation operator E is given by

E ≡
[
E1 E2 · · · En

]′
.

Agents can have heterogeneous information sets, and Ei may be different from Ej . The matrix W represents
the network structure.

Information structure Let εi be the vector of, normally distributed, shocks the first u being common
shocks, and the last r private. The covariance matrix of εi is the identity matrix. Suppose that the process
for fundamentals is given by

θi =
[
ϕ′

i 01×r

]
εi

and that agent i’s signal is given by
xi = Miεi

where
Mi ≡ MΣi,

and
Σi ≡ diag

(
τ
−1/2
1 , . . . , τ−1/2

u , τ
−1/2
1i , . . . , τ

−1/2
ri

)
,
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with u+ r ≡ m. Moreover, let
∆ ≡ diag(τ

−1/2
1 , . . . , τ−1/2

u , 0, . . . , 0),

and define Λ and Γ to be

Λ ≡

[
Iu

0r×u

]
m×u

, and Γ ≡ Im −ΛΛ′,

so that, in particular, we have
ΣiΛ = ∆Λ, and ΣiΛΛ′Σj = ∆2.

Let En
i be the n× n matrix with zeros everywhere and 1 at the position (i, i), and define

M =

n∑
i=1

En
i ⊗Mi, and Σ =

n∑
i=1

En
i ⊗Σi.

Finally, for each private shock, indexed by p, collect the associate variance for each agent i in the diagonal of
the following matrix:

Υp ≡ diag
(
τ−1
p1 , τ

−1
p2 , . . . , τ

−1
pn

)
.

Forecast The forecast of the fundamental of agent j by agent i is given by

E[θj | xi] = ϕ
′
jΛ

′M′
i (MiM

′
i)

−1
xi ≡ g′

jixi. (F.1)

F.2 Fixed Point Problem

Let hi be the equilibrium policy function for agent i, that is

yi = h′
ixi = h′

iMiεi.

Then, since the agents do not have information about others’ private shocks, the forecast of yj by agent i is
given by

E[yj | xi] = h′
jMjΛΛ′M′

i (MiM
′
i)

−1
xi.

In equilibrium, we have that
y1

y2
...
yn

 =


E[θ1 | x1]

E[θ2 | x2]
...

E[θn | xn]

+


0 E[y1 | x1] + w12E[y2 | x1] + · · ·+ w1nE[yn | x1]

w21E[y1 | x2] + 0 E[y2 | x2] + · · ·+ w2nE[yn | x2]
...

wn1E[y1 | xn] + wn2E[y2 | xn] + · · ·+ 0 E[yn | xn]

 ,

so that 
h′
1x1

h′
2x2

...
h′
nxn

 =


ϕ′

1Λ
′M′

1 (M1M
′
1)

−1
x1

ϕ′
2Λ

′M′
2 (M2M

′
2)

−1
x2

...
ϕ′

nΛ
′M′

n (MnM
′
n)

−1
xn

+


∑

k ̸=1 w1kh
′
kMkΛΛ′M′

1 (M1M
′
1)

−1
x1∑

k ̸=2 w2kh
′
kMkΛΛ′M′

2 (M2M
′
2)

−1
x2

...∑
k ̸=n wnkh

′
kMkΛΛ′M′

n (MnM
′
n)

−1
xn

 ,
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and, therefore, using the fact that this equation holds for any (x1, . . . ,xn) we can write
h′
1M1M

′
1

h′
2M2M

′
2

...
h′
nMnM

′
n

 =


ϕ′

1Λ
′M′

1

ϕ′
2Λ

′M′
2

...
ϕ′

nΛ
′M′

n

+


∑

k ̸=1 w1kh
′
kMkΛΛ′M′

1∑
k ̸=2 w2kh

′
kMkΛΛ′M′

2

...∑
k ̸=n wnkh

′
kMkΛΛ′M′

n

 .

Transposing each row we get
M1M

′
1h1

M2M
′
2h2

...
MnM

′
nhn

 =


M1Λϕ1

M2Λϕ2

...
MnΛϕn

+


∑

k ̸=1 w1kM1ΛΛ′M′
khk∑

k ̸=2 w2kM2ΛΛ′M′
khk

...∑
k ̸=n wnkMnΛΛ′M′

khk

 ,

which can be rewritten as
M M

′
h = M(In ⊗Λ)ϕ+M(W ⊗ΛΛ′)M

′
h,

where h and ϕ are defined to be

ϕ =


ϕ1

ϕ2

...
ϕn


nu×1

, and h =


h1

h2

...
hn

 .

Solving for h we obtain
h = C−1d,

where

C ≡ M(Inm −W ⊗ΛΛ′)M
′
,

d ≡ M(In ⊗Λ)ϕ.

The fact that C is invertible is established below in Section F.4. It follows that the equilibrium to the
beauty-contest model exists and is unique.

F.3 Modified Signal Process and Prediction Formula

Define D to be

D ≡
n∑

i=1

En
i ⊗Di,
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with each Di given by

Di ≡ In ⊗∆+

r∑
p=1

[Ωp ⊗Em
u+p] = diag

(
τ
−1/2
1 , . . . , τ−1/2

u , τ̃
−1/2
1i , . . . , τ̃

−1/2
ri

)
,

and where τ̃−1
pi is the i-th eigenvalue of (In −W)−1Υp. Suppose that the signals observed by agent i are a

modified version of xi given by
x̃i = MDiεi.

Notice that, relative to Σi, Di simply replaces the precision of the private signals τpi by the transformed τ̃pi.
It follows that

E[θj | x̃i] = ϕ
′
jΛ

′∆M′ (MD2
iM

′)−1
x̃i ≡ g′

jixi. (F.2)

where we used the fact that Λ′Di = Λ′∆. Moreover, we need the following assumption.

Assumption 7. The matrix (In − W) is invertible, (In − W)−1Υp is diagonalizable, all of its eigenvalues
have absolute value less than 1, and all of its eigenvectors are independent of p.44

Under this assumption, letting Q denote the matrix composed of the eigenvectors of (In − W)−1Υp, its
eigendecomposition allows us to write

(In −W)−1Υp = QΩpQ
−1 (F.3)

where

Ωp ≡


τ̃−1
p1 0 · · · 0

0 τ̃−1
p2 · · · 0

...
...

. . .
...

0 0 · · · τ̃−1
pn


n×n

.

F.4 Equivalence Result

We start with a useful lemma, then, using this lemma we prove a proposition that establishes the invertibility
of the matrix C and a final proposition that establishes the equivalence result.

Lemma F.1. Under Assumption 7 and using the definitions above, it follows that

Σ(Inm −W ⊗ΛΛ′)Σ = [(In −W)Q⊗ Im]D2[Q−1 ⊗ Im]

44A trivial case where this holds is when Υp = γpΥ or when r = 1.
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Proof. First notice that

Σ[(In −W)⊗ΛΛ′]Σ =

(
n∑

i=1

En
i ⊗Σi

)
[(In −W)⊗ΛΛ′]

 n∑
j=1

En
j ⊗Σj


=

n∑
i=1

n∑
j=1

En
i (In −W)En

j ⊗ΣiΛΛ′Σj

=(In −W)⊗∆2,

and

Σ[In ⊗ Γ]Σ =

(
n∑

i=1

En
i ⊗Σi

)
[In ⊗ Γ]

 n∑
j=1

En
j ⊗Σj


=

n∑
i=1

n∑
j=1

En
i E

n
j ⊗ΣiΓΣj

=

n∑
i=1

n∑
j=1

En
i E

n
j ⊗

r∑
p=1

r∑
q=1

τ
−1/2
ip τ

−1/2
jq Em

u+pE
m
qq

=

n∑
i=1

n∑
j=1

En
i E

n
j ⊗

r∑
p=1

τ
−1/2
ip τ

−1/2
jp Em

u+p

=

r∑
p=1

 n∑
i=1

n∑
j=1

En
i E

n
j ⊗ τ

−1/2
ip τ

−1/2
jp Em

u+p


=

r∑
p=1

 n∑
i=1

n∑
j=1

En
i τ

−1/2
ip τ

−1/2
jp En

j ⊗Em
u+p


=

r∑
p=1

[
n∑

i=1

En
i τ

−1
ip ⊗Em

u+p

]

=

r∑
p=1

[
Υp ⊗Em

u+p

]
.
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Hence,

Σ(Inm −W ⊗ΛΛ′)Σ = Σ(In ⊗ (Γ+ΛΛ′)−W ⊗ΛΛ′)Σ

= Σ[In ⊗ Γ]Σ+Σ[(In −W)⊗ΛΛ′]Σ

=

r∑
p=1

[
Υp ⊗Em

u+p

]
+ (In −W)⊗∆2

=

r∑
p=1

[
Υp ⊗Em

u+p

]
− (In −W)⊗ Γ+ (In −W)⊗ (∆2 + Γ)

=

r∑
p=1

[
Υp ⊗Em

u+p

]
−

r∑
p=1

[
(In −W)⊗Em

u+p

]
+ (In −W)⊗ (∆2 + Γ)

=
r∑

p=1

[
(Υp − In +W)⊗Em

u+p

]
+ (In −W)⊗ (∆2 + Γ)

= [(In −W)⊗ (∆2 + Γ)]

{
r∑

p=1

[
(In −W)−1(Υp − In +W)⊗ (∆2 + Γ)−1Em

u+p

]
+ Inm

}

= [(In −W)⊗ (∆2 + Γ)]

{
r∑

p=1

[
((In −W)−1Υp − In)⊗ (∆2 + Γ)−1Em

u+p

]
+ Inm

}
.

Next, using equation (F.3),

Σ(Inm −W ⊗ΛΛ′)Σ = [(In −W)⊗ (∆2 + Γ)]

{
r∑

p=1

[(QΩpQ
−1 − In)⊗ (∆2 + Γ)−1Em

u+p] + Inm

}

= [(In −W)Q⊗ (∆2 + Γ)]

{
r∑

p=1

[(Ωp − In)⊗ (∆2 + Γ)−1Em
u+p] + Inm

}
[Q−1 ⊗ Im]

= [(In −W)Q⊗ Im]

{
r∑

p=1

[(Ωp − In)⊗Em
u+p] + [In ⊗ (∆2 + Γ)]

}
[Q−1 ⊗ Im]

= [(In −W)Q⊗ Im]

{
r∑

p=1

[Ωp ⊗Em
u+p] + (In ⊗∆2)

}
[Q−1 ⊗ Im]

= [(In −W)Q⊗ Im]D2[Q−1 ⊗ Im].
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Proposition 11. Under Assumption 7 and using the definitions above, it follows that
h′
1

h′
2

...
h′
n

 =

n∑
k=1

QEn
kkQ

−1(In −W)−1


g′
1k

g′
2k
...

g′
nk

 .

Proof. First notice that

(In ⊗M)Σ(In ⊗Λ) = (In ⊗M)

(
n∑

i=1

En
i ⊗Σi

)
(In ⊗Λ)

= (In ⊗M)

(
n∑

i=1

En
i ⊗ΣiΛ

)
= (In ⊗M∆Λ)

So that, using this fact and Lemma F.1,

h = (M(Inm −W ⊗ΛΛ′)M
′
)−1M(In ⊗Λ)ϕ

=
[
(In ⊗M)Σ(Inm −W ⊗ΛΛ′)Σ(In ⊗M′)

]−1
(In ⊗M)Σ(In ⊗Λ)ϕ

=
[
(In ⊗M) ((In −W)Q⊗ Im)D2

(
Q−1 ⊗ Im

)
(In ⊗M′)

]−1
(In ⊗M∆Λ)ϕ

= (Q⊗ Ir)
[
(In ⊗M)D2(In ⊗M′)

]−1
(In ⊗M∆Λ)

(
Q−1(In −W)−1 ⊗ Iu

)
ϕ

= (Q⊗ Ir)

(
n∑

k=1

En
kk ⊗ (MD2

kM
′)−1M∆Λ

)(
Q−1(In −W)−1 ⊗ Iu

)
ϕ

=

n∑
k=1

[
QEn

kkQ
−1(In −W)−1 ⊗ (MD2

kM
′)−1M∆Λ

]
ϕ.

Finally, notice that, using the vectorization formula, we can rewrite this equation as

h = vec

(
n∑

k=1

(MD2
kM

′)−1M∆Λ
[
ϕ1 ϕ2 · · · ϕn

] (
QEn

kQ
−1(In −W)−1

)′)
,

and, it follows from equation (F.2) that

h = vec

(
n∑

k=1

[
g1k g2k · · · gnk

] (
QEn

kQ
−1(In −W)−1

)′)
.

The result follows by rearranging this equation.
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Notice that if all agents forecast the same fundamental, i.e. ϕj = ϕi then

hi =

n∑
k=1

ωikgk,

where

ωik ≡
n∑

j=1

e′iQEn
kQ

−1(In −W)−1ej ,

and and ei is the i-th column of In. Finally, notice that in the proof of Proposition 11 we also obtain the
following corollary.

Corollary 4. Under Assumption 7, C is invertible which implies that the equilibrium exists and is unique.
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G Proof of Proposition 8

In Section G.1 we obtain the canonical factorization of the auto-covariance generating function for the signal
process which is necessary to apply the Wiener-Hopf prediction formula in Section G.2. Section G.3 presents
and solves the fixed point problem that allows us to solve for the equilibrium explicitly. Section G.4 describes
the modified signal process and Section G.5 shows the equivalence between the equilibrium policy function
and the forecasting problem with the modified signal process.

G.1 Canonical Factorization

This information structure is tractable enough that we can solve for the equilibrium analitically using the
Wiener-Hopf prediction formula to solve the necessary forecasting problems explicitly. The observation equa-
tion is [

zt

xit

]
=

[
τ
−1/2
ε 0 1

1−ρL

0 τ
−1/2
ν

1
1−ρL

]
︸ ︷︷ ︸

≡M(L)

 ε̂tν̂it
η̂t


︸ ︷︷ ︸
≡ŝit

.

where ŝit is a vector of standardized normal random variables. Let A (L) be the auto-covariance generating
function for the signal process, then

A (L) ≡ M (L)M′ (L−1
)
=

1

(L− ρ) (1− ρL)

[
L+ (L−ρ)(1−ρL)

τε
L

L L+ (L−ρ)(1−ρL)
τν

]
.

In order to apply the Wiener-Hopf prediction formula we need to obtain the canonical factorization of A (L).
Accordingly, let λ be the inside root of the determinant of A (L), that is

λ =
1

2

τε + τν
ρ

+
1

ρ
+ ρ−

√(
τε + τν
ρ

+
1

ρ
+ ρ

)2

− 4

 .

Then notice that

V ≡ 1

λ (τν + τε)

[
λτν+ρτε

τε
ρ− λ

ρ− λ ρτν+λτε
τν

]
,

and

B (L) ≡ 1

(τν + τε) (1− ρL)

[
τν + τε − (ρτν + λτε)L (ρ− λ) τνL

(ρ− λ) τεL τν + τε − (λτν + ρτε)L

]
,

are such that
B (L)VB′ (L−1

)
= M (L)M′ (L−1

)
.
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G.2 Wiener-Hopf Prediction Formula

Applying the prediction formula, the forecast of θt =
[
0 0 1

1−ρL

]
ŝit is given by

Eit [θt] =
[[
0 0 1

1−ρL

]
M′ (L−1

)
B′ (L−1

)−1
]
+
V−1B (L)

−1

[
zt

xit

]
=

λ
[
τε τν

]
ρ (1− λL) (1− ρλ)

[
zt

xit

]
. (G.1)

Let g (L) ≡ h1(L) + h2(L), then, the forecast about yt =
[
τ
−1/2
ε h1 (L) 0 g(L)

1−ρL

]
ŝit is given by

Eit [yt] =
[[
τ
−1/2
ε h1 (L) 0 g(L)

1−ρL

]
M′ (L−1

)
B′ (L−1

)−1
]
+
V−1B (L)

−1

[
zt

xit

]

=


[(
(ρτν + λτε + λρ (λτν + ρτε))L− λρ (τν + τε)

(
1 + L2

))
h1 (L) τν (λ− ρ) (1− ρλ)Lh1 (L)

]
ρ (τν + τε) (L− λ) (1− λL)

+

[
τε (ρ− λ) (1− ρL)λh1 (λ) −τν (λ− ρ)λ (1− ρL)h1 (λ)

]
ρ (τν + τε) (L− λ) (1− λL)

+
λ (L (1− ρλ) g (L)− λ (1− ρL) g (λ))

[
τε τν

]
ρ (1− ρλ) (L− λ) (1− λL)


[
zt

xit

]
,

and the forecast about yt+1 =
[
τ
−1/2
ε L−1h1 (L) 0 L−1g(L)

1−ρL

]
ŝit is given by

Eit [yt+1] =
[[
τ
−1/2
ε L−1h1 (L) 0 L−1g(L)

1−ρL

]
M′ (L−1

)
B′ (L−1

)−1
]
+
V−1B (L)

−1

[
zt

xit

]

=


[(
(ρτν + λτε + λρ (λτν + ρτε))L− λρ (τν + τε)

(
1 + L2

))
λh1 (L) λτν (λ− ρ) (1− ρλ)Lh1 (L)

]
ρ (τν + τε)λL (L− λ) (1− λL)

+

[
τε (ρ− λ) (1− ρL)λLh1 (λ) −λτν (λ− ρ) (1− ρL)Lh1 (λ)

]
ρ (τν + τε)λL (L− λ) (1− λL)

+

[
−λρ (L− λ) (τν + τε − (λτν + ρτε)L)h1 (0) λτν (λ− ρ)Lρ (L− λ)h1 (0)

]
ρ (τν + τε)λL (L− λ) (1− λL)

+
λ ((1− ρλ) g (L)− (1− ρL) g (λ))

[
τε τν

]
ρ (1− ρλ) (L− λ) (1− λL)


[
zt

xit

]
.
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G.3 Fixed Point

Substituting the forecast formulas into the best response function we obtain the following system

C(L)

[
h1 (L)

h2 (L)

]
= D (L) ,

where

C(L) ≡

1− (α+βL−1)
ρ(L−λ)(1−λL)

(−λρ(τν+τε)L
2+(ρτν+λτε+λρ(λτν+ρτε))L−λρ(τν+τε))+λLτε(τν+τε)

(τν+τε)
− (α+βL−1)λLτε

ρ(L−λ)(1−λL)

− (α+βL−1)
ρ(L−λ)(1−λL)

−τν(λ−ρ)(L(λρ−1))+λLτν(τν+τε)
(τν+τε)

1− (α+βL−1)λLτν

ρ(L−λ)(1−λL)

 ,

D(L) ≡
γλ
[
τε τν

]′
ρ (1− λL) (1− ρλ)

− φ1

(1− ρL)
[
τε τν

]′
(L− λ) (1− λL)

− φ2

[
τε + τν − (λτν + ρτε)L τν (λ− ρ)L

]′
L (1− λL)

,

with

φ1 ≡ αλ+ β

λ

(
λ (λ− ρ)h1 (λ)

ρ (τν + τε)
+

λ2g (λ)

ρ (1− ρλ)

)
, and φ2 ≡ β

τν + τε
h1 (0) .

Using the fact that λ+ 1
λ = ρ+ 1

ρ + τε+τν
ρ to substitute out for τε, C (L) simplifies to

C (L) =

[
1− α− βL−1 − α+βL−1

ρ(L−λ)(1−λL)λLτε

0 1− α+βL−1

ρ(L−λ)(1−λL)λLτν

]
.

Next notice that the determinant of C(L),

det(C(L)) =
−λ
(
L2 −

(
λ+ 1

λ

)
L+ 1 + αL+β

ρ τν

)
((1− α)L− β)

L (1− λL) (L− λ)

has two inside roots,

ω1 ≡
ρ
(
λ+ 1

λ

)
− ατν −

√(
ρ
(
λ+ 1

λ

)
− ατν

)2 − 4 (ρ+ βτν) ρ

2ρ
, and ω2 ≡ β

1− α
,

and one outside root,
ω3 ≡ ρ+ βτν

ρ

1

ω1
.
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Solving the system for h1(L) and h2(L) and choosing φ1 and φ2 to remove the inside poles of h1(L) at ω1 and
ω2,45 and rearranging we obtain the policy functions explicitly in terms of parameters,

h1 (L) =
ψ

ρ (ω3 − ρ)

τε(
1− 1

ω3
L
) , and h2 (L) =

ψ

ρ (ω3 − ρ)

(
(1− α)− β

ω3

)
τν(

1− 1
ω3
L
)

where
ψ ≡ γ

1− α− ρβ
.

G.4 Modified Signal Process

Suppose, now, that agents receive the same public signals as before but the private signals are given by

x̃it = θt + ν̃it

where ν̃it ∼ N (0, τ̃−1
ν ) and

τ̃ν ≡
(
(1− α)− β

ω3

)
τν .

Notice that, applying the Wiener-Hopf prediction formula, analogously to above, we obtain

Ẽit [θt] =
λ̃
[
τε τ̃ν

]
ρ
(
1− λ̃L

)(
1− ρλ̃

) [ zt
x̃it

]
,

where

λ̃ ≡ 1

2

τε + τ̃ν
ρ

+
1

ρ
+ ρ−

√(
τε + τ̃ν
ρ

+
1

ρ
+ ρ

)2

− 4

 .

G.5 Equivalence Result

Finally, notice that
λ̃ = ω−1

3 ,

and, therefore,

ψẼit [θt] =
ψ

ρ (ω3 − ρ)

[
τε

(
(1− α)− β

ω3

)
τν

]
(
1− 1

ω3
L
) [

zt

x̃it

]
=
[
h1 (L) h2 (L)

] [ zt
x̃it

]
.

45That is,

φ1 =
γρ ((1− α)λ− κ) (1− λω3) + γκλτν
ρ2 (1− ρλ) (ω3 − ρ) (1− α− ρκ)

, and φ2 =
γκ ((λ− ρ) (1− ρλ) + λτν)

ρ (1− ρλ) (ω3 − ρ) (1− α− ρκ) (λ− ρ)
.
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G.6 Forward and Backward Looking Best Response

Consider the following best response function where agents also care about future and past aggregate actions,

yit = γEit [θt] + αEit[yt] + βEit [yt+1] + κEit [yt−1] .

Following a similar procedure to the one above we can solve for the equilibrium best response functions,

h1 (L) =
ψτε(

1− 1
ω3
L
)(

1− 1
ω4
L
) , and h2 (L) =

ψ (κω3ω4 − β) τν

ω3

(
1− 1

ω3
L
)

where

ψ ≡ γ (ρ+ κτν)

(κω4 − ρβ) (ρ+ κτν) ρω3 − ρ2κ (ρ+ βτν)ω4 + ρβ (ρ3 + (ρ (1− α)− κ) τν)
,

ω3 ≡
(1− α) τν + τε + 1 + ρ2 +

√
((1− α) τu + τε + 1 + ρ2)

2 − 4 (ρ+ βτu) (ρ+ κτν)

2 (ρ+ κτν)
,

ω4 ≡
1− α+

√
(1− α)

2 − 4βκ

2κ
.

Relative to a forecast of θt with the signal structure above (see equation (G.1)) there is an extra lag operator
in the denominator of the response to the public signal, h1(L), here. Hence, the equilibrium actions cannot
be represented by a forecast of θt by a modification of the precision of the shocks using the same information
structure.

H Additional Examples

H.1 Multi-Action Example

In this section, we explore the effects of information frictions on the comovement between aggregate outcomes.
To our knowledge, this paper is the first to explore this issue. The joint dynamics of multiple aggregate
outcomes results from their intrinsic cross-dependence and from the degree of information frictions. Using the
single-agent solution from Proposition 4, we obtain a clear characterization of these two forces. In particular,
we show that increasing the degree of information frictions can flip the sign of the correlation between aggregate
variables.

Consider an economy in which agents choose two actions simultaneously. For simplicity, assume that the two
actions depend on the same aggregate fundamental, θt. Then, the agents’ best response functions can be
written as

y1it = Eit[θt] + a11Eit[y
1
t ] + a12Eit[y

2
t ]

y2it = Eit[θt] + a21Eit[y
1
t ] + a22Eit[y

2
t ]
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where the matrix

A =

[
a11 a12

a21 a22

]
= Q

[
α1 0

0 α2

]
Q−1,

summarizes the dependence on aggregate actions. The second equality represents the eigendecomposition of
matrix A, where α1 and α2 denote its eigenvalues and Q is a matrix composed of its eigenvectors. Without
loss of generality, let ω1 and ω2, be such that

Q =

[
1 1
ω2

ω1

1−(1−α1)ω2

1−(1−α1)ω2

]
.

Notice that choosing α1, α2, ω1 and ω2 we can generate any matrix A that satisfies Assumption 4. The
policy rule permits a simpler format when represented in terms of these parameters rather than the ones in
the original matrix A. Applying Proposition 4, it follows that

y1t = ω1Ẽt[θt;α1] + ϕ1Ẽt[θt;α2],

y2t = ω2Ẽt[θt;α1] + ϕ2Ẽt[θt;α2].

where ϕ1 and ϕ2 are functions of the primitives

ϕ1 ≡ 1

1− α2
− 1− α1

1− α2
ω1, and ϕ2 ≡ 1

1− α2
− 1− α1

1− α2
ω2.

This representation makes clear how the degrees of strategic complementarity affect each action. In particular,
if α1 = α2, then Ẽt[θt;α1] = Ẽt[θt;α2], and the actions are the same irrespective of how these forecasts are
weighted. If α1 ̸= α2, the behavior of the two actions does depend on the weights.

Next, we show in a numerical example how dispersed information can affect the relationship between the two
actions. Suppose that the fundamental follows an AR(1) process

θt = ρθt−1 + ηt, ηt ∼ N (0, τ−1
η ),

and that agents only receive a private signal about θt,

xit = θt + νit, νit ∼ N (0, τ−1
ν ).

We set the eigenvalues to α1 = −0.5, and α2 = 0.5, so the precision of the α1-modified signals are higher. We
also set the eigenvector parameters to ω1 = 0.6, and ω2 = 1.4, which implies that ϕ1 = 0.2, and ϕ2 = −2.2.
In the perfect information benchmark, both modified forecasts collapse to the fundamental itself, that is
Ẽt[θt;α1] = Ẽt[θt;α2] = θt. The aggregate outcomes are, then, uniquely pinned down by the fundamental and
the parameters controlling strategic interactions. Explicitly,

y1t = (ω1 + ϕ1)θt, and y2t = (ω2 + ϕ2)θt.

Under our parameterization, (ω1 + ϕ1) and (ω2 + ϕ2) have opposite signs, and therefore, the actions are
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(F) αj-Modified Forecasts with τν = 0.1

Figure 5: Multi-action Example
Parameters: τη = 1, ρ = 0.75, ω1 = 0.6 and ω2 = 1.4, α1 = −0.5 and α2 = 0.5.

perfectly negatively correlated, as shown in Figure 5A. Figure 5C shows that, when τν = 1, the two actions
still move in different directions. The reason is that both (1− α1)τν and (1− α2)τν are large enough, so that
Ẽt[θt;α1] and Ẽt[θt;α2] are still quite responsive and close to one another, as shown in Figure 5D.

When τν = 0.1, the modified precisions are low enough yielding a Ẽt[θt;α2] close to zero; recall that α2 = 0.5 >

−0.5 = α1. As a result, even though ϕ1 and ϕ2 have the opposite signs, the terms with Ẽt[θt;α1] dominate
and the aggregate actions comove. In fact, Figure 6 shows that the correlation between the two actions is
decreasing in τν monotonically, and switch from positive to negative.

This result—that the correlation between actions is increasing in the intensity of information frictions—
depends on the particular specification of parameters in this example. However, it highlights the fact that
dispersed information may significantly affect the joint behavior of interactive actions.
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Figure 6: Correlation between y1t and y2t for different τν

H.2 Endogenous Learning Example

Relative to Example 1, suppose agents also receive a signal about the aggregate action yt, which is an endoge-
nous object. Letting εit = [θt, νit, εit]

′, the information structure can be represented within the framework of
equation (6.1):

M(L) =

[
1 1 0

0 0 1

]
, p(L) =

[
0

1

]
⇒

xit = θt + νit

zit = yt + εit.

For simplicity, we also assume that all the shocks are i.i.d.: θt ∼ N (0, τ−1
θ ), νit ∼ N (0, τ−1

ν ), and εit ∼
N (0, τ−1

ε ). This type of information structure is widely used in the literature on endogenous learning.

The aggregate action, yt, must depend on the fundamental, θt—the only aggregate shock in this economy—so
we conjecture that

yt = H θt,

for some constant H. Since agents do not internalize the effects of their own actions on others’ signals, they
take H as given. Hence, their forecasting problem, given H, is equivalent to one in which their signals are
generated by the following exogenous process:

M̂(L) =

[
1 1 0

H 0 1

]
⇒

xit = θt + νit

ẑit = H θt + εit

With endogenous information, even in the absence of a primitive coordinating motive (α = 0), agents implicitly
coordinate via their signal processes. Using the single-agent solution, one can focus on the alternative simple
forecasting problem in which all the coordination occurs via information. In the example at hand, the aggregate
action can be written as

yt =

∫
Ẽit[θt] =

(1− α)τν
τθ + (1− α)τν +H2 (1− α)τε

∫
xit +

H (1− α)τε
τθ + (1− α)τν +H2 (1− α)τε

∫
ẑit.

At this stage, the equivalence result spares us the trouble of making an inference about yt, and this policy rule
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already satisfies the first two equilibrium conditions in Definition 3. To make sure that the perceived law of
motion for yt is consistent with agents’ signal processes, condition (6.3) must also be satisfied, which reduces
to a cubic polynomial equation in terms of H,

(1− α)τε H3 − (1− α)τε H2 + (τθ + (1− α)τν)H− (1− α)τν = 0. (H.1)

It is clear that there may exist multiple real solutions to equation (H.1), which correspond to multiple equilibria.
The origin of this multiplicity lies in the self-fulfilling property of the signals’ informativeness. For example,
if all agents respond to the fundamental aggressively, if H is high, then the signal zit is very informative. As
a result, agents can learn more from the endogenous signal and indeed become more responsive.
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