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Abstract

This paper characterizes the effects of ambiguity aversion under dispersed information. The
equilibrium outcome is observationally equivalent to a Bayesian forecast of the fundamental with
increased sensitivity to signals and a pessimistic bias. This equivalence result takes a simple
form that accommodates dynamic information and strategic interactions. Applying the result, we
show that ambiguity aversion helps rationalize the joint empirical pattern between the bias and
persistence of inflation forecasts conditional on household income. In a policy game à la Barro
and Gordon (1983) with ambiguity-averse agents, the policy rule features higher average inflation
and increased responsiveness to fundamentals.
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1 Introduction

Workhorse macroeconomic models often assume that agents have perfect knowledge about the un-
derlying data-generating process of the economy. However, households and firms often face model
uncertainty or ambiguity1 when making economic decisions. For example, after the pandemic, infla-
tion has surged and average inflation targeting entered the policy discussion. It is less clear whether
inflation will fluctuate around 2% or 4% in the near future, and each of these scenarios could be
interpreted as a different model economy. Moreover, when economic decisions are interdependent,
coordination among market participants relies on their perceptions of how others would react to such
uncertainty. In this environment, what are the macroeconomic effects of ambiguity? Can ambigu-
ity help explain the deviations from rational expectations observed in survey data? How does the
presence of ambiguity aversion in the private sector affect optimal policy design?

This paper makes two contributions. Theoretically, we show that despite the complexities associated
with dispersed information, coordination motives, and ambiguity aversion, the equilibrium strategy is
equivalent to a single-agent forecasting problem with two modifications: an amplified responsiveness
to signals and a permanent pessimistic bias. This equivalence result applies to general information
processes and takes a simple form, enabling the use of standard numerical algorithms to compute
equilibrium strategies. On the applied side, we document that the bias in inflation forecasts decreases
with household income, while the persistence of forecast errors increases with household income. This
observed joint distribution can be naturally accounted for in a model where agents exhibit ambiguity
aversion towards inflation shocks. In a policy game à la Barro and Gordon (1983), we show that
policymakers respond to this behavioral pattern by increasing both their responsiveness to shocks
and the unconditional level at which they set the inflation rate.

Framework. We consider an abstract Gaussian-quadratic economy. Agents’ payoffs depend on an
exogenous fundamental, their own actions, and the average actions of others, following Angeletos
and Pavan (2007). The generic quadratic utility function can be regarded as the reduced form repre-
sentation of a micro-founded economy that allows for general equilibrium (GE) effects. In addition,
we impose minimal restrictions on the information structure to accommodate persistent learning
and dispersed information. The main departure from the existing literature is that the fundamental
is not only stochastic but also ambiguous, in the sense that agents do not have perfect knowledge
about its objective probability distribution. In the baseline specification, agents are ambiguity-averse,
with preferences represented by the smooth model of ambiguity proposed by Klibanoff, Marinacci,
and Mukerji (2005). We adopt the smooth rule when updating preferences (Hanany and Klibanoff,

1According to Marinacci (2015), ambiguity refers to subjective uncertainty over probabilities due to a lack of ex-ante
information to determine a specific model for the economy in the course of decision-making.
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2009), ensuring dynamic consistency and optimal ex-ante equilibrium strategies.2 We also extend
the analysis to models with robust preferences (Hansen and Sargent, 2001a,b).

The interaction between ambiguity aversion and dispersed information makes the equilibrium difficult
to characterize. It has been widely recognized that ambiguity-averse agents behave as if their beliefs
about the fundamental are distorted (Ilut and Schneider, 2014; Bhandari, Borovička, and Ho, 2023)
and that these distortions are affected by the equilibrium strategies. This results in a fixed-point
problem between the strategies and beliefs of all agents in equilibrium. On top of that, the presence
of imperfect coordination and persistent information leads to the infinite regress problem (Townsend,
1983), with higher-order beliefs potentially requiring an infinite-dimensional state space.

Equivalence results. Conceptually, the presence of ambiguity amounts to a more diffuse prior,
and ambiguity aversion makes the diffusion loom larger. As a result, agents divert attention from
their priors to their signals, leading to a higher sensitivity to signals. Meanwhile, in the face of model
uncertainty, ambiguity-averse agents are more concerned about models that yield lower payoffs and
tend to place greater emphasis on adverse probability distributions. This consideration leads agents
to behave as if they are pessimistically biased when making forecasts.

Our equivalence result formalizes this intuition and circumvents the aforementioned technical com-
plexities. The equilibrium strategy is ultimately equivalent to that of a modified single-agent Bayesian
forecasting the fundamental. We first introduce a (w,α)-modified signal process. In this auxiliary
forecasting problem, the precision of idiosyncratic shocks is discounted by the degree of strategic
complementarity, α, which captures the idea that the coordination motive reduces the importance
of private information in inferring the aggregate outcome (Huo and Pedroni, 2020). In addition, the
prior variance of the fundamental shock is amplified by w—an endogenous object that summarizes
the extent to which the prior becomes more diffuse due to ambiguity aversion.

We establish that the equilibrium strategy coincides with the Bayesian forecasting rule using the
(w,α)-modified signal process, with two notable adjustments governed by the endogenous variable
w. First, there is an additional uniform overreaction to all signals. This overreaction distinguishes the
equilibrium strategy from a Bayesian forecasting problem, resembling the departure from rationality
implied by diagnostic expectations (Bordalo, Gennaioli, Ma, and Shleifer, 2020). Second, there is an
additional bias that is independent of the signal realization, further differentiating the equilibrium
allocation from its rational-expectations counterpart. To close the loop, we provide the condition
that w needs to satisfy, which involves only unconditional moments about endogenous aggregate
outcomes.

2This approach is equivalent to characterizing the sequential equilibrium with ambiguity, an equilibrium refinement
proposed in Hanany, Klibanoff, and Mukerji (2020).
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This result provides a concise summary of the effects of ambiguity aversion in a general equilibrium
setting. The characterization enables the derivation of general comparative static results. For ex-
ample, we show that an increase in the degree of strategic complementarity leads to greater bias.
To understand the underlying intuition, one needs to invoke the fact that, with ambiguity aversion,
equilibrium outcomes depend on subjective higher-order beliefs. With rational expectations, beliefs
of higher order rely more on the common prior (Morris and Shin, 2002). With ambiguity aversion,
the bias in others’ beliefs is embedded in the common prior, which then accumulates as the order
increases. A higher degree of strategic complementarity increases the relative weight of higher-order
beliefs, thereby amplifying the bias.

Computationally, this result provides a tractable algorithm for computing the equilibrium strate-
gies. In the absence of ambiguity, dynamic higher-order expectations require, in principle, the entire
history of signals as state variables. However, a finite-state representation is possible when signals
follow ARMA(p, q) processes (Woodford, 2003; Angeletos and La’O, 2010; Huo and Pedroni, 2020).
Our results imply that a similar finite-state equilibrium representation is still possible even with
ambiguity-averse agents. The original infinite-dimensional problem collapses to a one-dimensional
problem to determine the endogenous amplifier of the prior variance, w. To solve the Bayesian fore-
casting problem with the (w,α)-modified signal process, the standard Kalman filter can be applied.

Survey evidence on inflation expectations. Our equivalence result helps explain the patterns
observed in survey data regarding the joint behavior of bias and persistence in inflation forecasts.
Using the Michigan Survey of Consumers (MSC) and the Survey of Consumer Expectations (SCE),
we document that the bias and the persistence of inflation forecast errors jointly vary with household
income levels. Specifically, higher-income households tend to exhibit lower forecast bias but more
persistent forecast errors. This joint behavior of bias and persistence is at odds with the predictions
of rational expectations models. Rationality would imply an average bias of zero, and the higher
persistence of forecast errors of the rich would require that they have less precise information.

We demonstrate that the observed patterns naturally arise from a micro-founded optimal consump-
tion problem in which households face ambiguity about the inflation process. With rigid nominal
incomes, higher inflation erodes households’ real purchasing power. Accordingly, ambiguity-averse
households assign more weight to high-inflation models, resulting in an upward bias in inflation fore-
casts. At the same time, ambiguity aversion induces increased sensitivity to signals or a reduction
in the weight put on the prior mean of inflation, which in turn reduces the persistence of forecast
errors.

Importantly, households with lower nominal incomes are more exposed to variations in inflation
and are more sensitive to ambiguous inflation shocks. In the cross-section of households, it is as
if higher-income households were less ambiguity-averse. Consequently, the inflation forecasts of the
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income-rich feature relatively lower levels of bias, lower sensitivity to signals, and higher persistence
of forecast errors. With this rather parsimonious structure, our model matches the documented
cross-sectional patterns reasonably well when calibrated to the data. Further, the predictions of the
model are also broadly consistent with existing survey evidence on expectations, including under-
reaction at the consensus level (Coibion and Gorodnichenko, 2015), over-reaction at the individual
level (Bordalo, Gennaioli, Ma, and Shleifer, 2020), and delayed overshooting (Angeletos, Huo, and
Sastry, 2021).

Optimal policy with ambiguity aversion. How should policy respond to the observed devia-
tions from rational expectations? To shed light on this question, we explore a policy game à la Barro
and Gordon (1983). Specifically, a policymaker attempts to strike a balance between minimizing
the unemployment rate and minimizing deviations from the inflation target, subject to the Phillips
curve. The optimal inflation policy is then a weighted average of the exogenous random inflation
target and the average inflation expectation in the private sector. Departing from Barro and Gor-
don (1983), we allow agents to receive dispersed information and face ambiguity about the inflation
target. This ambiguity may arise from factors such as ambiguous policy communication or a loose
policy objective like average inflation targeting.

The optimal policy rule is an affine function of the exogenous inflation target. The slope represents
the responsiveness to changes in the target, while the intercept determines the long-run average
inflation rate. In the presence of imperfect information but no ambiguity, the slope is dampened
due to the underreaction of the consensus forecasts, but the intercept coincides with the mean of
the inflation target. Introducing ambiguity results in additional sensitivity to information and a
permanent positive bias, so a steeper slope and a lifted intercept in the policy rule. The former
brings the inflation dynamics closer to the first-best, while the latter pushes the policy away from
it. We show that it is always beneficial to have some ambiguity about the inflation target as the
initial benefits from increased sensitivity outweigh the initial costs associated with the higher bias.
However, for high enough ambiguity this relationship flips, and additional ambiguity reduces welfare.
It follows that an intermediate level of ambiguity is desirable.

Robust preferences Although our analysis focuses on the smooth model of ambiguity, the main
insights on bias and sensitivity extend to models with robust preferences. Despite these being
significantly different approaches to ambiguity, we find that under certain conditions, for a robust
preferences model, a corresponding smooth model of ambiguity exists such that the equilibrium
strategies in both models are identical up to a constant. There are subtle differences in determining
w for the auxiliary (w,α)-modified signal process,3 but the quantitative predictions of the two models

3With robust preferences, the condition that w needs to satisfy involves conditional moments about individual
variables, whereas the condition in the smooth model involves only unconditional moments of aggregate variables.
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in our applications are notably similar.

Related literature This paper contributes to the literature exploring the implications of ambi-
guity and ambiguity aversion in macroeconomic models. There are three prominent representations
of ambiguity-averse preferences in the literature: (1) the multiple priors preference axiomatized by
Gilboa and Schmeidler (1989); (2) the robust preferences model proposed by Hansen and Sargent
(2001a,b); and (3) the smooth model of ambiguity axiomatized by Klibanoff, Marinacci, and Muk-
erji (2005). Each of these representations has been extensively used in macroeconomic applications.
For example, in the context of business cycle models, Ilut and Schneider (2014), Bianchi, Ilut, and
Schneider (2017), and Ilut and Saijo (2021) employ the multiple priors preference approach;4 Luo
and Young (2010), Bidder and Smith (2012), and Bhandari, Borovička, and Ho (2023) use robust
preferences; and Backus, Ferriere, and Zin (2015) Altug, Collard, Çakmakl, Mukerji, and Özsöylev
(2020), and Pei (2023) apply the smooth model of ambiguity. In the asset pricing literature, Epstein
and Wang (1994), Chen and Epstein (2002), and Miao (2009) use the multiple priors preference
approach; Hansen, Sargent, and Tallarini (1999) and Anderson, Hansen, and Sargent (2003) utilize
robust preferences; and Ju and Miao (2012), Collard, Mukerji, Sheppard, and Tallon (2018), and
Gallant, R Jahan-Parvar, and Liu (2018) employ the smooth model of ambiguity. Additionally,
Michelacci and Paciello (2019) study the effects of monetary policy announcements under multiple
priors preferences.

Most of the aforementioned works assume representative agents and abstract from incomplete infor-
mation. We analyze the effects of ambiguity and ambiguity aversion within a flexible environment
that accommodates not only GE considerations but also incomplete information and persistent learn-
ing. In this regard, our findings complement the literature on games with incomplete information
(Morris and Shin, 2002; Woodford, 2003; Angeletos and Pavan, 2007; Angeletos and La’O, 2010),
extending the analysis beyond the rational expectations benchmark. Our theoretical results also
establish a link between the equilibrium outcomes in the smooth model of ambiguity and the robust
preferences model. In this vein, Cerreia-Vioglio, Corraob, and Lanzani (2024) characterize the effects
of ambiguity in the high-coordination limit under general preferences, while our results apply for any
level of coordination when restricting attention to more stylized preferences.

Our paper is also related to an extensive body of literature examining systematic biases in agents’
expectations using survey data. Elliott, Komunjer, and Timmermann (2008) present evidence of sys-
tematic bias in professional forecasters’ expectations and suggest that an asymmetric loss function
rationalizes the documented biases.5 Similar evidence of biased expectations has been documented

4We refer to Ilut and Schneider (2023) for a more comprehensive review of recent development in the applications
of multiple priors preferences in macroeconomics.

5Pope and Schweitzer (2011) demonstrate that bias originating from loss aversion can persist even in high-stake
contexts using data on the performance of professional golfers in the PGA TOUR.

5



by Kohlhas and Robertson (2024) and Farmer, Nakamura, and Steinsson (2023) using the Survey of
Professional Forecasters. Kohlhas and Robertson (2024) show that professional forecasters’ expecta-
tions are biased but more accurate than commonly used time-series models, particularly in the short
run. They propose a theory of cautious expectations in which agents estimate the optimal weight on
observed signals using classical inference, resulting in a trade-off between bias and accuracy. Farmer,
Nakamura, and Steinsson (2023) present evidence of bias in macroeconomic expectations using the
Survey of Professional Forecasters (SPF) and note that the associated forecast errors are serially
correlated. Within a Bayesian paradigm that retains rationality, the authors demonstrate that slow
learning over the long-run trend with a unit root can rationalize the documented bias and persis-
tence in forecast errors. In a similar context, Andolfatto, Hendry, and Moran (2008) argue that
the bias in inflation expectations can arise from small sample problems. In a recent study, using
machine learning algorithms, Bianchi, Ludvigson, and Ma (2022) also document substantial bias in
macroeconomic expectations of professional forecasters and reveal its cyclical properties. Relatedly,
Azeredo da Silveira, Sung, and Woodford (2020) and Sung (2024) show that imprecise memory can
lead to biased forecasts and have rich implications for sensitivity depending on forecasting horizons.6

The evidence of biased expectations extends beyond professional forecasters. Using the MSC, Bhan-
dari, Borovička, and Ho (2023) document that households’ inflation and unemployment rate forecasts
feature pessimistic biases, which are counter-cyclical and co-move positively along the business cycle.
Rozsypal and Schlafmann (2023) document a systematic bias in individual-level income expectations
that varies with income levels.7 They argue that an over-persistence bias rationalizes this evidence,
which is broadly consistent with the approach proposed by Molavi (2023). Using survey evidence in
UK, Michelacci and Paciello (2024) study how the pessimistic bias in inflation forecasts is related to
households’ wishes about inflation and nominal interest rates.

We contribute to this literature by presenting evidence on the joint behavior of bias and persistence of
forecast errors across the income distribution, which cannot be easily rationalized by existing theories
of expectation formation. Our theory provides a joint characterization of bias and sensitivity, directly
addressing these empirical patterns.

Finally, our paper is related to the large literature on optimal policy under incomplete information
(Adam, 2007; Lorenzoni, 2010; Paciello and Wiederholt, 2014; Amador and Weill, 2010; Angeletos
and Lao, 2020; Angeletos and Sastry, 2021). This line of work has mainly focused on the respon-
siveness and cyclicality of the policy instrument when agents are subject to informational frictions,
while the mistakes made by the private sector are mostly temporary. Relative to the existing litera-

6The notion of bias in Azeredo da Silveira, Sung, and Woodford (2020) and Sung (2024) is more related to the
comparison between sensitivities under rational expectations and bounded rationality, while our notion of bias refers
to the deviations of the unconditional mean of forecast errors from the rational benchmark.

7See Dominitz and Manski (1997), Dominitz (1998), Das and van Soest (1999), and Massenot and Pettinicchi (2019)
for more related studies on the pessimistic bias of expectations on individual income.
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ture, the additional bias and sensitivity in our environment introduce a trade-off between short-run
responsiveness and long-run bias in policy design, and we illustrate the different welfare implications
with alternative micro-foundations for the presence of biases.

2 An Illustrative Example

In this section, we discuss the interaction between ambiguity and imperfect information in a single-
agent environment. We show how ambiguity aversion increases sensitivity to signals and leads to
biased forecasts, relative to the Bayesian benchmark. We then extend these insights to a more
general setting in the next section, where we introduce recurrent shocks and general equilibrium
considerations.

2.1 A pure forecasting problem

Consider an inference problem about some exogenous economic fundamental. Assume the funda-
mental ξ is drawn from a Gaussian distribution with mean µ̄ and variance σ2ξ ,

ξ ∼ N (µ̄, σ2ξ ).

Agent i does not observe the fundamental perfectly, but receives a private noisy signal xi about it:

xi = ξ + ϵi, with ϵi ∼ N (0, σ2ϵ ).

In the absence of ambiguity, the distributions of underlying shocks are common knowledge. Agents
perceive that there is a single model, or a single probability distribution, that describes the stochas-
ticity of random variables. Uncertainty arises from the realization of shocks within a model, which
is referred to as risk.

Bayesian expectations To begin, we revisit the standard Bayesian benchmark. In this case,
agents simply want to minimize the mean-squared error (MSE) of their forecast. With Gaussian
shocks, we can focus on linear strategies,

g(xi) = sxi + b,

where the s represents the sensitivity to signals and b is some constant. Given a particular strategy
characterized by the pair (s, b), the MSE can be expressed as the sum of two terms

E
[
(g(xi)− ξ)2

]
= R(s) + (b− (1− s) µ̄)2 , where R(s) = s2σ2ϵ + (1− s)2 σ2ξ . (2.1)

7



The first term, R(s), represents the cost of within-model uncertainty (risk)—a weighted sum of the
variance of the fundamental and of the noise. For any sensitivity s, the second term can always be
set to zero by appropriately choosing the constant b. It follows that the optimal sensitivity, sRE, is
obtained by minimizing the cost of risk:

sRE = argminR(s) =
σ2ξ

σ2ξ + σ2ϵ
.

The optimal strategy is then given by

g(xi) = sRExi + (1− sRE)µ, (2.2)

a simple weighted average between the prior mean and the signal, following Bayesian updating. The
optimal sensitivity corresponds to the familiar signal-to-noise ratio.

2.2 Ambiguity and Ambiguity Aversion

Ambiguity When agents face ambiguity, they could perceive multiple plausible models that de-
scribe the economy, each corresponding to a different distribution of underlying shocks. This gener-
alization accommodates the possibility that agents may have doubts about what is the right model
of the economy. For instance, in the aftermath of the Pandemic, consumers may be uncertain about
whether inflation will fluctuate around an average level of 2% or 4% in the upcoming years. Similarly,
during the slow recovery from the Great recession, firms may wonder whether their sales growth will
remain stagnant or rebound to its pre-recession level.

We restrict our attention to the case where agents face ambiguity about the prior mean of the
aggregate fundamental ξ.8 Objectively, ξ is distributed according to N (µ̄, σ2ξ ). Subjectively, however,
agents’ priors do not necessarily coincide with the objective distribution. They believe there can be
multiple possible prior means, which themselves follow a normal distribution centered around the
objective mean:

ξ ∼ N (µ, σ2ξ ), where µ ∼ N (µ̄, σ2µ).

In this case, different models are indexed by different µ, while σ2µ parameterizes the ex-ante un-
certainty about the models. When σ2µ = 0, we return to the Bayesian benchmark. Without loss
of generality, we assume that µ̄ = 0. The ex-ante probability density function of the perceived

8We explore ambiguity about the variance of the fundamental in Appendix G.1. In this scenario, the equilibrium
strategy exhibits higher sensitivity but zero bias. Additionally, in Appendix G.2, we investigate the possibility that
agents perceive ambiguity about the variance of the noise. In this case, we find that the equilibrium strategy exhibits
less sensitivity rather than more, but still exhibits zero bias.

8



distribution of µ satisfies

p(µ) ∝ exp

(
−1

2
σ−2
µ µ2

)
.

Ambiguity Aversion We now specify the preference of agents towards ambiguity. Specifically, we
are interested in the case where agents are ambiguity-averse, meaning they dislike ambiguity more
than risk. To this end, given a strategy g(xi), similarly to Klibanoff, Marinacci, and Mukerji (2005),
we adopt the following loss function L(g),

L(g) = ϕ−1

(∫
µ
ϕ

(
Eµ
[
(g(xi)− ξ)2 − χξ

])
p(µ)dµ

)
. (2.3)

The integral over µ reflects the fact that agents face additional uncertainty about the prior mean.
For each µ, Eµ [·] denotes the mathematical expectations in an economy where the prior mean is
given by µ. We assume that agents can commit to following the strategy g(xi), which is equivalent
to adopting the smooth rule when updating preferences, ensuring dynamic consistency (Hanany and
Klibanoff, 2009).9

There are two additional modifications relative to the previous forecasting problem. First, the
transformation ϕ(·) introduces an additional cost associated with ambiguity about µ. When ϕ(·) is
linear, the problem reduces to

L(g) =
∫
µ
Eµ
[
(g(xi)− ξ)2 − χξ

]
p(µ)dµ. (2.4)

This corresponds to the ambiguity neutral case, where the uncertainty about µ is treated in the
same way as the within-model uncertainty about ξ and ϵi. Namely, adding uncertainty about µ is
equivalent to drawing a compound lottery.

The distinction between ambiguity and risk becomes meaningful when the transformation ϕ(·) is
convex. Then, agents incur additional losses when their perceived model is found to be incorrect,
and agents are said to have ambiguity aversion. In what follows, we assume that ϕ(·) takes a constant
absolute ambiguity aversion (CAAA) form, that is,

ϕ (x) =
1

λ
exp (λx) , (2.5)

where λ ≥ 0 measures the degree of ambiguity aversion.

Second, the reduced-form quadratic loss function can be derived from a general decision making
problem in which the optimal strategy is equivalent to forecasting the solution under complete (or

9More details are provided in the remark at the end of Section 3.1.
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perfect) information—this is the approach we follow in the Section 3. Note that the payoff directly
depends on the level of the fundamental, captured by the term χξ. For example, firms benefit
from higher TFP regardless of their production decisions, while consumers benefit from higher real
income independent of their consumption-saving decisions. The direct dependence on the exogenous
fundamental is common in economic problems but can usually be ignored as it is inconsequential
when agents are ambiguity neutral or when there is no ambiguity. In contrast, this dependence leads
to biased forecast when agents are ambiguity-averse.

Sensitivity and bias To see how ambiguity aversion modifies agents’ strategies, it is useful to
decompose the loss function into the costs due to risk and ambiguity. Given a linear strategy
g(xi) = sxi + b,10 this decomposition can be expressed as

L(g) = R(s)︸ ︷︷ ︸
cost of risk

+
1

λ
log

∫
µ
exp

(
λ
[
(b− (1− s)µ)2 − χµ

])
p(µ)dµ︸ ︷︷ ︸

cost of ambiguity

. (2.6)

First, ambiguity aversion leads to a higher sensitivity towards signals. Intuitively, a more diffused
prior leads agents to rely more heavily on signals, and ambiguity aversion amplifies this effect. To see
the forces more clearly, note that the cost of risk, R(s), remains the same as in equation (2.1). When
there is no ambiguity, an agent can simply choose s = sRE to minimize R(s). When uncertainty
about the prior mean is present, a trade-off arises between the cost of risk and the cost of ambiguity.
At one extreme, if an agent only wants to minimize the cost of ambiguity, they would set s = 1 to
eliminate the impact of ambiguity on forecast errors. Striking a balance between the two types of
cost implies an enhanced sensitivity towards signals.

Second, ambiguity aversion introduces a bias in agents’ strategies and forecasts. In equation (2.6),
the direct effect of the exogenous fundamental, χµ, is not symmetric around zero. Consider the case
where χ > 0. The losses in a model indexed with a negative prior mean are higher than the gains
in a model indexed with a positive prior mean. Similar to the idea of self-insurance, an agent finds
it optimal to mitigate losses in “rainy days” by assigning more weight to models with a negative µ.
This affects the choice of the constant b, leading to biased forecasts. Ex ante, this incentive makes
it appear as if agents have a more pessimistic view of the world.

The adjustment of sensitivity and bias in an agent’s strategy is driven by their payoffs, as they place
more weight on models that generate higher expected costs due to ambiguity aversion. Simulta-
neously, the magnitude of these costs is determined by the chosen strategy. This interdependence
leads to a fixed-point problem. According to the following proposition, the optimal strategy can be

10With ambiguity aversion but in the absence of strategic interactions, the unique optimal response is a linear function
of signals. See Appendix D for more details.
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understood as if agents faced no ambiguity but had a modified prior belief.

Proposition 2.1. The optimal linear strategy is equivalent to the Bayesian expectation with a more
diffused prior belief, ξ ∼ N (0, σ̃2µ (s

∗) + σ2ξ ), and a bias

g(xi) = s∗xi + B,

where the sensitivity s∗ satisfies

s∗ =
σ̃2µ(s

∗) + σ2ξ
σ̃2µ(s

∗) + σ2ξ + σ2ϵ
, with σ̃2µ (s) ≡

σ2µ

1− 2λσ2µ (1− s)2
, (2.7)

and the bias is given by

B = −χλσ2µ(1− s∗). (2.8)

Let us unpack these expressions. First of all, given the additional variance, σ̃2µ (s∗), in the prior belief,
the optimal sensitivity is identical to the one under Bayesian expectations (2.2). The determination
of the optimal sensitivity, s∗, requires solving a fixed-point problem. In the presence of ambiguity
aversion, agents increase their sensitivity to reduce the ambiguity cost. At the same time, however,
the degree to which they want to penalize the ambiguity cost is endogenously determined by the
employed sensitivity. The system (2.7) succinctly summarizes these forces.

Next, even though the ex-ante belief about the distribution of µ is centered around zero, agents
behave as if the prior mean is biased, captured by B. The “as-if” shift of the mean is increasing in
how much agents directly care about the fundamental, the degree of ambiguity aversion, and the
amount of ambiguity.

The presence of ambiguity aversion predicts a joint pattern of sensitivity and bias. In the sequel,
we show that this prediction is robust to different information structures and preferences and is
supported by survey evidence on expectations.

3 General Equivalence Result

In this section, we present our main theoretical results. We extend the intuition from the illustrating
example to an environment with more general preferences that also accommodate strategic interac-
tions between agents. In addition, we allow for flexible persistent information structures and learning
dynamics. We show that the optimal action under ambiguity aversion is akin to a pure forecasting
problem of the fundamental with a modified prior belief.
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3.1 Environment

Objective environment The economy is populated by a continuum of agents indexed by i. Agents
care about a common fundamental, ξt, which follows the stochastic process:

ξt = a(L)ηt, with ηt ∼ N (0, σ2η),

where a(L) is a polynomial in the lag operator L, and ηt is the innovation to the aggregate funda-
mental.11

Agents receive dispersed information about the fundamental. The vector of signals observed by
individual agent i every period is given by

xit = m(L)ηt + n(L)ϵit, with ϵit ∼ N (0,Σ), (3.1)

where m(L) and n(L) are polynomial matrices in L that determine the dynamics of the signal
process, and ϵit is a vector of idiosyncratic noises that wash out in aggregate. Unlike in Section 2,
the fundamental as well as the signals can be persistent, which implies that the entire history of
signals will be relevant for inference. To ensure that the random variables are stationary and signals
do not contain future information, we make the following standard assumption.

Assumption 1. All elements of a(L), m(L), and n(L) contain only L with non-negative powers and
are square-summable.

Ambiguity In the objective environment, ηt is normally distributed with mean zero. Subjectively,
agents believe that ηt is drawn from a Gaussian distribution with the same volatility, σ2η, but there
is uncertainty about its prior mean, denoted by µt. The ambiguity about ξt is captured by the
perception that

ηt ∼ N (µt, σ
2
η), and µt ∼ N (0, σ2µ). (3.2)

As in Section 2, the value of σ2µ determines the degree of ambiguity.

Preference towards risk We first specify preferences about within-model risk. As a baseline, we
consider a class of economies with quadratic utility given by

u(kit,Kt, ξt) = −1

2

[
(1− α) (kit − ξt)

2 + α (kit −Kt)
2
]
− χξt −

1

2
γξ2t , (3.3)

11So far, ηt is the only aggregate shock in the economy. We extend the analysis to allow for multiple aggregate shocks
in Appendix B.3.
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where kit denotes agent i’s action and Kt denotes the aggregate outcome of the economy,

Kt ≡
∫
kitdi.

The first component of the utility function, (1 − α)(kit − ξt)
2 + α(kit − Kt)

2, captures the payoff
directly associated with the individual agent’s action. Agents aim to align their actions with the
exogenous fundamental and the aggregate outcome. The degree of strategic complementarity, con-
trolled by the parameter α, influences the strength of general equilibrium considerations. The second
component, χξt + 1

2γξ
2
t , captures the non-strategic impact of the fundamental on the agent’s utility.

This component only affects the agent’s optimal strategy when there is ambiguity and agents are
ambiguity-averse.

The utility specification in equation (3.3) can be viewed as a quadratic approximation of a generic
utility function, u(kit,Kt, ξt), as specified in Angeletos and Pavan (2007).12 This specification ac-
commodates strategic interactions among agents and a flexible dependence on fundamentals, but
excludes the dependence on (Kt − ξt)

2, Kt, and Ktξt. In the language of Angeletos and Pavan
(2007), specification (3.3) pertains to economies that are efficient under both complete and incom-
plete information. However, in general, the underlying economy may be inefficient, and in such
cases, dependence on the aforementioned terms may arise. Nevertheless, our main observational
equivalence result still applies in these cases, as discussed in Appendix B.2.

Preference towards ambiguity Agents are assumed to be ambiguity-averse, with preferences
represented by the smooth model of ambiguity,

ϕ−1

(∫
µt

ϕ
(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt
)
dµt
)
. (3.4)

The expectation operator Eµt
[u (kit, kt, ξt)] denotes the ex-ante expected utility under the model

indexed by µt ≡ {µt, µt−1, . . .}, and p
(
µt
)

denotes the prior belief about µt derived from (3.2). We
continue to assume the functional form:

ϕ(x) = − 1

λ
exp(−λx),

which permits the tractability of the inference problem.

Remark on ex-ante strategy Similar to the illustrative example from Section 2, each agent i
chooses their preferred strategy, which is now a contingency plan denoted by kit = g(xti), for every

12The approximation is centered around the non-stochastic steady state: either the deterministic or the ambiguous
steady state depending on the model environment.
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possible history of private signals, xti ≡ {xit, xit−1, . . .}. We assume that all agents can commit
to following their strategies, determined ex ante, when taking actions ex post. It is equivalent to
assuming that the conditional preferences of agents upon receiving a history of private signals, xti, are
dynamically consistent.13 The smooth rule of updating proposed by Hanany and Klibanoff (2009)
ensures dynamic consistency. Moreover, the allocation with commitment coincides with that of the
ex-ante equilibrium defined in Hanany, Klibanoff, and Mukerji (2020), which is sequentially optimal
when conditional preferences are updated using the smooth rule.14

Finally, we make the following assumption to ensure that the problem is well-defined.15

Assumption 2. γ ≥ 0 and λγ σ2
µ

σ2
η
V(ξt) < 1.

3.2 Subjective Beliefs and Equilibrium

We begin by defining a Nash equilibrium in our environment.

Definition 3.1. A Nash equilibrium is a strategy g(xti) such that kit = g(xti) maximizes the objective
(3.4), and the aggregate outcome is consistent with individual actions, Kt =

∫
g(xti)di.

We focus on linear strategies, with g(xti) being linear functions of the history of signals. The next
proposition establishes that a linear Nash equilibrium always exists, so this focus should be seen as
an equilibrium refinement rather than a restriction.16

Proposition 3.1. A Nash equilibrium with linear strategies exists.

Without ambiguity aversion, the problem reduces to a standard beauty contest, and the optimal
strategy can be written as an average of the expected fundamental and the expected aggregate
outcome, as in Morris and Shin (2002). With ambiguity aversion, a similar result holds, albeit the
expectations need to be based on the endogenous subjective beliefs. Consider the first-order condition
for maximizing (3.4) with respect to the individual action kit:∫

µt

Eµt

[
∂u(kit,Kt, ξt)

∂kit
| xti
]
ϕ′
(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt | xti

)
dµt = 0. (3.5)

13We restrict attention to the set of preferences that preserve closure, namely each member of that set remains in
the set after updating. This property holds naturally for expected utility preferences with Bayesian updating.

14The conditional preference under the smooth rule is made explicit in equation (A.1) in Appendix A.
15The first restriction, γ ≥ 0, ensures that in the non-stochastic steady state under complete information, the utility

function is concave in the fundamental. The second assumption stipulates that the level of ambiguity or the degree
of ambiguity aversion should not exceed a certain threshold. It ensures that the ex-ante objective (3.4) is finite for at
least one strategy, so that the agent’s choice set is non-empty (see the Proof of Lemma A.5 in Appendix A for a more
detailed discussion).

16With strategic interactions, we cannot rule out the possibility that all agents collectively choose a non-linear
strategy. That being said, as shown in Appendix D, when the coordination motive vanishes (as in Section 2), there
exists a unique solution to the individual’s forecasting problem which is linear in signals.
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Notice that when evaluating the payoff implications of an action, relative to the Bayesian kernel
p(µt|xti), agents behave as if they were using an expectation kernel distorted by ϕ′(Eµt

[u (kit,Kt, ξt)]),
which we refer to as the agents’ subjective beliefs. This distortion reflects the fact that, whenever
a model generates lower ex-ante expected utility in equilibrium, agents would regard it as the more
likely model in their posterior belief relative to the Bayesian posterior. Recall that we have already
employed this line of argument when explaining the bias term in the illustrating example. In the
special case in which agents are ambiguity neutral, ϕ′(·) = 1, and the subjective kernel coincides
with the Bayesian one. The following proposition summarizes this discussion.

Proposition 3.2. Taking the law of motion of Kt as given, agent i’s best response satisfies

kit = (1− α)Fit [ξt] + αFit [Kt] , (3.6)

where Fit [·] denotes agent i’s subjective expectation operator, that is

Fit [·] ≡
∫
µt

Eµt
[ · | xti] p̂

(
µt | xti

)
dµt, with p̂

(
µt | xti

)
∝ ϕ′

(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt | xti

)
.

Importantly, since agents’ payoffs depend on the aggregate outcome Kt, both the magnitude and
dynamics of belief distortions hinge on the equilibrium coordination motive. Consequently, besides
needing to anticipate the actions and beliefs of others, the way that agents form their beliefs is
also affected by the aggregate outcome. The fact that the equilibrium outcome and the distorted
subjective beliefs have to be jointly determined makes solving the equilibrium significantly more
involved.

The equilibrium outcome can also be expressed as a weighted sum of higher-order subjective expec-
tations.

Corollary 3.1. In equilibrium, the aggregate outcome is a function of a weighted sum of infinite
subjective higher-order expectations of ξt,

Kt = (1− α)

∞∑
j=0

αjF j+1
t [ξt] , (3.7)

where F1
t [·] ≡

∫
Fit[·]di, and F j+1

t [·] ≡
∫
Fit

[
F j

t [·]
]
di.

This result indicates that when forming their own beliefs, agents must take into account the possible
bias and altered sensitivity in others’ forecasts, and this incentive is regulated by the degree of strate-
gic complementarity. In Section 3.4, we show that this representation helps uncover the interaction
between coordination and ambiguity aversion.
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3.3 Equilibrium Characterization

In this subsection, we provide an equivalence result that circumvents the determination of higher-
order subjective beliefs. We show that solving for the equilibrium strategy described above can be
reduced to solving a single-agent Bayesian forecasting problem with a modified information struc-
ture. This forecasting problem can then be tackled using the Kalman filter, which facilitates the
development of a convenient toolbox for solving models featuring ambiguity and persistent learning.
The straightforward characterization it provides also allows us to derive valuable comparative statics
results under general conditions.

Auxiliary forecasting problem First consider the following auxiliary inference problem about
the fundamental with Bayesian forecasters, which we later link back to the economy with ambiguity.

Definition 3.2. The (w,α)-modified signal process is given by

ξ̃t = a(L)η̃t, with η̃t ∼ N (0, (1 + w)σ2η), (3.8)

x̃it = m(L)η̃t + n(L)ϵ̃it, with ϵ̃it ∼ N (0, (1− α)−1Σ), (3.9)

where w is a non-negative scalar and α is the degree of complementarity. Let the optimal Bayesian
forecast be given by

Ẽit[ξ̃t] = p(L;w,α) x̃it. (3.10)

This signal process imposes two modifications relative to the original process. The volatility of the
innovation to the fundamental is amplified by a factor of (1 + w), and the covariance matrix of the
idiosyncratic noise is amplified by (1− α)−1. Intuitively, ambiguity aversion leads to a more diffuse
prior about ηt, while the coordination motive reduces agents’ incentives to rely on private information.
These two considerations from the original environment are captured by the modifications to the
shock processes in this auxiliary forecasting problem.

Sensitivity and bias Next, we introduce a notion of aggregate sensitivity and bias in our multi-
variate setting, which helps characterize the equilibrium strategy.

Definition 3.3. Define the aggregate sensitivity to signals as

S ≡ 1− COV (ξt −Kt, ξt)

V (ξt)
, (3.11)

and the bias as
B ≡ E[ξt]− E[Kt]. (3.12)
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With multiple signals, the sensitivity to signals can no longer be measured by the loading on a
particular signal. To better understand the definition in equation (3.11), notice that under perfect
information, the aggregate outcome Kt simply mirrors the exogenous fundamental ξt, and S = 1.
When information is incomplete, however, agents receive noisy signals and their aggregate response
is dampened, reducing S. Moving to the definition of bias in equation (3.12), notice that without
ambiguity, the unconditional mean of the aggregate outcome coincides with that of the fundamental,
resulting in B = 0, even if information is incomplete. Ambiguity aversion, however, can lead to a
permanent bias in agents’ actions.

These definitions for sensitivity and bias can also be viewed as the counterparts of the regression
coefficients in the following equation:

ξt −Kt = β0 + β1ξt + residuals, (3.13)

where β0 corresponds to the bias, B, and β1 corresponds to the reverse of the sensitivity, 1−S.17 These
two moments contain rich information about agents’ subjective beliefs and about the expectation
formation process. As in Section 2, the levels of bias and sensitivity are jointly determined in
equilibrium.

Equilibrium strategy Despite the complex interactions between persistent information, coordi-
nation motives, and ambiguity aversion, the equilibrium strategy ultimately takes a relatively simple
form. This form can be connected to the notion of aggregate sensitivity and bias. Let τµ ≡ σ2µ/σ

2
η

be a normalized measure of the amount of ambiguity.

Proposition 3.3. The linear strategy in equilibrium takes the following form

g(xti) = (1 + r)p(L;w,α)xit + B. (3.14)

1. The polynomial matrix p(L;w,α) is the Bayesian forecasting rule in (3.10) with the (w,α)-
modified signal process and w satisfies

w =

[
1

τµ
− λ (1− α)

(
V (ξt −Kt) +

λγτµV (ξt)
2 (1− S)2

1− λγτµV (ξt)

)]−1

≥ τµ. (3.15)

2. The additional amplification, r, satisfies

r = γ
λτµV (ξt)

1− λγτµV (ξt)

w

1 + w
(1− S) ≥ 0. (3.16)

17When Kt stands for the consensus forecasts about ξt, regression (3.13) resembles the ones explored in Kohlhas and
Walther (2021).
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3. The level of bias, B, satisfies

B = χ
λτµV (ξt)

1− λγτµV (ξt)
(1− S). (3.17)

To understand this result, let us first ignore ambiguity (τµ = 0). In this case, the equilibrium
strategy reduces to p(L; 0, α). This means agents’ actions are equivalent to forming Bayesian ex-
pectations about ξt, with the volatility of idiosyncratic noise adjusted to accommodate coordination
considerations. This equilibrium characterization bypasses the dependence on higher-order beliefs
and includes the single-agent results from Huo and Pedroni (2020).

When ambiguity is present (τµ > 0), prior uncertainty looms larger. This effect is captured by the
amplified variance of the fundamental, by a factor of (1 + w), in equation (3.8). Following the new
forecasting rule p(L;w,α), agents’ reliance on their signals increases when making forecasts. This
channel makes it appear as if agents are overconfident in their signals, as in Broer and Kohlhas (2022).
Moreover, remember that the term −χξt − 1

2γξ
2
t in the utility function captures the non-strategic

impact of the fundamental on the agent’s payoff. A positive γ introduces an additional reason for
agents to react to signals: the dependence on ξ2t intensifies the impact of extreme realizations of the
prior mean µt on welfare. This pushes agents’ actions further away from the Bayesian benchmark
through its effect on r. This additional overreaction is similar to the diagnostic expectations ex-
plored in Bordalo, Gennaioli, Ma, and Shleifer (2020), but in our environment the magnitude of this
overreaction is endogenously determined in equilibrium.18

Additionally, if χ ̸= 0, the equilibrium strategy exhibits a permanent bias. Keep in mind that agents’
subjective beliefs, Fit[·], assign more weight to models that generate lower ex-ante expected utility,
leading to a pessimistic bias.19 Condition (3.17) indicates that the magnitude of the bias B and the
level of sensitivity S are endogenously connected and constrained by equilibrium conditions. It is
worth noting that condition (3.17) does not imply a direct inverse relationship between sensitivity and
bias, as both are ultimately functions of deep parameters in the model. For instance, in Section 2,
we observe that when the degree of ambiguity aversion varies, both bias and sensitivity move in
the same direction. The joint pattern of bias and sensitivity yields testable implications, which we
explore in Section 4.

Computation Even without ambiguity, solving for the equilibrium presents a significant challenge
due to the combination of persistent information and coordination motives. Agents’ strategies are
infinite-dimensional objects with the entire history of signals as state variables. Although a finite-

18It should be noted that the implied overreaction in our equilibrium is built on a different micro-foundation than
those in Broer and Kohlhas (2022) and Bordalo, Gennaioli, Ma, and Shleifer (2020). These approaches are suitable for
different applied settings and are not necessarily substitutes.

19Notice that the sign of the bias depends on the sign of χ.
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state representation is possible when signals follow finite ARMA(p, q) processes (Woodford, 2003;
Angeletos and La’O, 2010; Huo and Pedroni, 2020), it remains unclear whether these results could
be extended to models with ambiguity aversion. The following corollary confirms they can:

Corollary 3.2. When the fundamental and signals follow finite ARMA processes, the equilibrium
strategy admits a finite-state representation.

Proposition 3.3 shows that the finite-state representation of the equilibrium can be achieved with
ambiguity-averse agents, persistent information, and general-equilibrium considerations. It also out-
lines a clear computation method:20

1. For a particular pair of (w,α), the Bayesian forecasting rule p(L;w,α) can be obtained using
standard algorithms such as the Kalman filter.

2. The value of r can be determined using condition (3.16). Together with the equilibrium strategy
(3.14), this leads to the outcome Kt and the sensitivity S. At this stage, the bias can be ignored
as it does not affect any of the terms in the formulas.

3. Condition (3.15) can then be used to iterate on the value of w until convergence.

4. Finally, the bias can be obtained from equation (3.17).

In summary, this complex, seemingly infinite-dimensional problem effectively reduces to a one-
dimensional fixed-point problem about w. In Section 4, we leverage this result to characterize the
dynamics of inflation forecasts under ambiguity, which boils down to solving a single cubic equation.

3.4 Role of General Equilibrium Considerations

How do GE considerations interact with ambiguity aversion? To answer this question, it is useful
to revisit the higher-order expectation representation in equation (3.7). A change in α not only
affects the responses of expectations at each order, but also shifts the relative weight assigned to
each expectation. However, these intensive and extensive margins do not necessarily move in the
same direction in shaping equilibrium outcomes.

To illustrate the intuition with, we start with a simple example with static information, and then
extend the findings to general information processes. Suppose that the utility function is given by

u (ki,K, ξ) = −1

2

[
(1− α) (ki − ξ)2 + α (ki −K)2

]
− χξ,

20We could also accommodate the case where the signals contain endogenous aggregate variables. Since each agent
behaves in a competitive way, they still treat the information as exogenous even if signals are endogenous. Therefore,
adding endogenous signals amount to adding another layer of fixed point problem on top of our equivalence result.
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and that agents perceive ambiguity about the fundamental according to

ξ ∼ N
(
µ, σ2ξ

)
, and µ ∼ N

(
0, σ2µ

)
,

where µ is objectively zero. Agents also observe a private signal xi ∼ N
(
ξ, σ2ϵ

)
. In this simple setup,

we can further evaluate the effects of GE considerations on sensitivity and bias, by examining the
properties of subjective higher-order expectations.

Proposition 3.4. In the example economy, subjective higher-order expectations obey the following
structure

1. The m-th order subjective expectation defined in condition (3.7) is given by

Fm
[ξ] = κmξ+βm, with κm =

(
(1 + w)σ2ξ

(1 + w)σ2ξ + σ2ϵ

)m

, and βm = βm−1+(κm − κm−1)λχσ
2
µ;

2. The endogenous multiplier w is not monotonic in α;

3. The aggregate outcome is given by

K = S ξ + B = (1− α)
∞∑

m=0

αmκm ξ + (1− α)
∞∑

m=0

αmβm.

Part 1 implies that for a fixed α, as the order increases, the sensitivity of the subjective higher-order
expectations, κm, decreases with the order. This is displayed in the left panel of Figure 3.1 and
resembles the rational expectations result without ambiguity (Morris and Shin, 2002). Interestingly,
the right panel of Figure 3.1 shows that the bias, βm, is increasing in the order of expectation. This
is a result of the accumulation of pessimism in ascending the hierarchy of beliefs—a footprint of
ambiguity aversion. When forecasting the beliefs of others, agents internalize the bias of others in
addition to their own.

Part 2 suggests that there are competing forces shaping the effect of a change in α on w. Ceteris paribus,
a higher α shifts agents’ attention from forecasting the fundamental to forecasting others’ actions.
As a result, private information about the fundamental becomes less relevant, and agents reduce how
much they respond to signals. As can be seen in condition (3.15), the endogenous amplification force
captured by w vanishes when α approaches 1.

However, this is not the only force at play. Condition (3.15) also reveals that a reduction in the
sensitivity S could contribute to a higher w. This is due to the fact that, when agents reduce the
responsiveness to signals, they also increase their reliance on their ambiguous prior, and this is costly
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Figure 3.1: Subjective Higher-Order Beliefs
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Note: This figure reports sensitivity (Panel A) and bias (Panel B) associated with the entire belief hierarchy as a
function of the order of beliefs.

since agents are ambiguity-averse. Endogenously, this puts upwards pressure on w to undo this effect.
Overall, these two forces leave the comparative statics of w with respect to α ambiguous. As shown
in Figure 3.2, w exhibits a humped shape with respect to the strength of GE considerations.

This nonmonotonicity is inherited by both κm and βm. Together with Part 1 of Proposition 3.4, this
implies that sensitivities and biases at every order mirror the pattern of w and are not monotonic
with respect to the GE consideration α.

Part 3 states that the observed sensitivity and bias of the aggregate outcome is a weighted average
of κm and βm. Mechanically, as α increases, a larger weight is assigned to higher-order expectations
relative to first-order expectations.

Ultimately, when α changes, the reweighting channel dominates the ambiguous effects on w, leading
to overall lower sensitivity and increased bias. These observations hold beyond this simple exam-
ple. Taking advantage of Proposition 3.3, we obtain the following result for a general information
structure.

Proposition 3.5. When γ = 0, the sensitivity S is decreasing in α, and the magnitude of bias |B|
is increasing in α.
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Figure 3.2: Comparative Statics of w over α.
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3.5 Extensions

The results discussed so far depend on assumptions about the payoff function and the informa-
tion structure. However, the observational equivalence result and the insights regarding bias and
sensitivity are more general.

Multiple actions In the baseline specification, each agent chooses only one action, while firms
and households often need to simultaneously consider multiple choices. For example, a manager
must jointly plan hiring and advertisement expenditures; a consumer must decide on the allocation
of time for work-related activities, educational activities, household work, and so on. We now extend
our baseline specification to accommodate this possibility.

We maintain the specification for the shocks and ambiguity but modify the preference towards risk
as follows

u(kit,Kt, ξt) =
1

2
(kit − κξt)

′Ψk (kit − κξt) +
1

2
(kit −Kt)

′ΨK (kit −Kt) + χξt −
1

2
γξ2t , (3.18)

which is a generalization of the univariate case (3.3) to allow for multiple actions.21 Here, the
individual actions, kit, and the aggregate actions, Kt, are both J × 1 random vectors. The constant
J×J matrices Ψk and ΨK contain information on how individual and aggregate actions affect welfare
in the steady state. Finally, κ is a J×1 vector of constants that determines how agents would respond
to the fundamental in a full information economy.

Unlike the baseline environment, an individual agent’s best response leads to a multivariate beauty
21This specification is derived from a quadratic approximation of generic preferences, which is efficient under incom-

plete information. See Appendix B.1 for details.
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contest game.

Lemma 3.1. Denote subjective expectations by Fit[·] as in Proposition 3.2. The best response sat-
isfies

kit = (I −Θ)Fit [κξt] + ΘFit [Kt] , with Θ ≡ (Ψk +ΨK)−1ΨK .

In addition, denote the eigenvalue decomposition of Θ as

Θ = Q−1diag(α1, . . . , αJ)Q.

The best response system can be transformed into

Qkit = (I − diag(α1, . . . , αJ))Fit [Qκξt] + diag(α1, . . . , αJ)Fit [QKt] .

With multiple actions, the interdependence between actions makes strategic complementarities more
involved, summarized now by the matrix Θ. When information is perfect and there is no ambiguity
about the fundamental, kit = Kt = κξt, and the matrix Θ is irrelevant. When information is
incomplete, Θ starts to play a role.

The second part of Lemma 3.1 shows that the multivariate system can be transformed into a seem-
ingly decoupled system: the vector of transformed actions, Qkit, is orthogonal in the sense that
the corresponding complementarities are now represented by a diagonal matrix. This is indeed the
case when the expectation operator is independent of agents’ actions. However, when agents are
ambiguity-averse, subjective beliefs depend on expected utility. As a result, the actions remain
interconnected through the endogeneity of the beliefs.

To proceed, we define bias and sensitivity for the multiple action case, now given by J × 1 vectors,

B ≡ E[κξt]− E[Kt], and S ≡ 1− COV (κξt −Kt, ξt)

V (ξt)
.

We also introduce the J × J matrix W that generalizes the scalar w from condition (3.15),

W ≡

(
τ−1
µ I + λQ

(
V (κξt −Kt) +

λγτµV (ξt)
2

1− λγτµV (ξt)
(1− S) (1− S)′

)
ΨkQ

−1

)−1

.

The following proposition circumvents the aforementioned difficulties and establishes an equivalence
result that resembles the univariate one.
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Proposition 3.6. The linear strategy in equilibrium takes the following form22

kit = g(xti) = Q−1P−1


(∑J

j=1 P1j

(
1 +

(1−αj)
(1−α1)

rj

)
e′jQκ

)
p(L;w1, α1)

...(∑J
j=1 PJj

(
1 +

(1−αj)
(1−αJ )

rj

)
e′jQκ

)
p(L;wJ , αJ)

xit + B.

1. The polynomial matrix p(L;wj , αj) is the Bayesian forecasting rule in (3.10). The matrix P
and the scalars wj derive from the following eigenvalue decomposition

(I− diag(α1, . . . , αJ))
(
τ−1
µ I +W

)
= P−1diag(ω1, . . . , ωJ)P , and wj ≡

τµωj

1− αj
− 1.

2. The additional amplification, rj, satisfies

rj = γ
λτµV (ξt)

1− λγτµV (ξt)

e′jWQ (1− S)
e′jQκ1 (1 + wj)

.

3. The bias vector, B, satisfies

B = χ
λτµV (ξt)

1− λγτµV(ξt)
(1− S) .

The equilibrium strategy is effectively a linear combination of J different Bayesian forecasts of the
fundamental. In these modified forecasts, the idiosyncratic noises are adjusted according to the
eigenvalues of the matrix of complementarities, Θ, which is exogenous. On the other hand, the
shocks to fundamentals are adjusted according to the eigenvalue of an endogenous matrix involving
W . The matrix P provides the required rotation, on top of the matrix Q, so that the vector of
actions can be analyzed in an orthogonal way, even when ambiguity aversion is present. Notably, the
biases for each action share a common component but also depend on their specific correlation with
the fundamental, captured by the vector κ. This allows the bias to vary in direction for different
actions.

Other extensions In Appendix B.2, we allow the economy to be inefficient under both complete
and incomplete information. Essentially, our equivalence result applies to general quadratic payoff
structures. Our optimal-policy application in Section 5 utilizes this set of results.

In another extension, Appendix B.3 shows how to generalize these insights to settings with multiple
aggregate shocks, including common noises. This extension can be used to study the interaction
between ambiguity and the effects of non-fundamental driven fluctuations, for example.

22The vector ej denotes the j-th column of the J × J identity matrix.

24



Finally, Appendix F explores the effects of ambiguity on the value of increasing signal precision.
The answer to this question is particularly relevant for models of rational inattention, where signal
precision is chosen endogenously, balancing the cost and benefit of acquiring information. We show
that the value of higher precision in signals is increasing in the amount of ambiguity.

4 Application: Inflation Forecasts

Under full information rational expectations (FIRE), optimal forecasts are unbiased and forecast
errors are serially uncorrelated. In contrast, using survey data on expectations, the literature has
demonstrated that the average forecasts of agents are biased and that forecast errors are serially
correlated.23 In this section, we document additional survey evidence on the joint behavior of bias and
persistence across the income distribution, which cannot be easily rationalized by existing theories of
expectation formation. We then show that these facts emerge naturally from a micro-founded model
with ambiguity-averse consumers.

4.1 Data and Facts

The Michigan Survey of Consumers (MSC) collects data on household inflation expectations asking
what is their “price expectations for the next 12 months.” It also provides information about house-
hold income, which allows us to allocate surveyed households in each quarter into groups based on
their income percentiles. For each income group g, the average inflation forecast error in quarter t
is calculated as the average inflation forecast error across every household i ∈ Ig:

FEg,t ≡
∫
Ig
(πt,f −Fi,g,t[πt]) di,

where we continue to use Fi,g,t to denote households’ subjective expectations. The bias and persis-
tence of forecast errors for each income group are given by their across-time average and autocorre-
lation:

Biasg ≡ 1

T

T∑
t=1

FEg,t, and Persistenceg ≡ Corr
(
FEg,t,FEg,t−1

)
. (4.1)

Figure 4.1 presents the bias (panel A) and persistence (panel B) of households’ one-year-ahead
inflation forecasts. In line with the existing literature, households’ inflation forecasts are biased
upwards leading to negative average forecast errors. What is interesting is the joint behavior of bias
and persistence in the cross-section of household incomes. As households move up the income ladder,
the bias in their inflation expectations decreases, while the persistence of their inflation forecast errors

23See, for example, Farmer, Nakamura, and Steinsson (2023) for evidence of bias and autocorrelated forecast errors
in the survey of professional forecasters; Kohlhas and Robertson (2024) for evidence of bias in professional forecasters’
forecasts, and Bhandari, Borovička, and Ho (2023) for evidence of bias in household forecasts.
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increases.

Figure 4.1: Bias and Persistence of Forecast Error in the Survey Data
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Note: This figure reports bias (Panel A) and persistence (Panel B) of households’ inflation forecasts in the cross-
section of the income distribution. Bias and persistence of each income percentile are calculated by the mean and serial
correlation of forecast errors of households’ inflation expectations for the next 12 months. Data are obtained from the
Michigan Survey of Consumers between 1987:I and 2020:IV.

In Appendix H.1, we further document several additional results: (1) In the Survey of Consumer
Expectations (SCE), conducted by the Federal Reserve of New York, the joint pattern of bias and
persistence of forecast errors is similar to the one observed in the MSC, as shown in Table H.1. (2)
At the individual level, after controlling for other observed characteristics such as age and resident
state, the magnitude of the bias continues to decrease with income, as shown in Table H.2.

The documented patterns of bias and persistence of forecast errors present challenges to the as-
sumption of rational expectations. Within the rational expectations paradigm, whether under full
or noisy information, forecast errors should be zero on average. Noisy rational expectations can gen-
erate persistent forecast errors, but matching the increasing pattern of persistence across household
income would require having richer households being less informed about the economy. A notable
exception is Farmer, Nakamura, and Steinsson (2023). They demonstrate that slow learning over
the long-run trend with a unit root can create bias and persistence in forecast errors. However,
the question of why bias and persistence move in opposite directions as household income changes
remains unaddressed.

In what follows, we set up a two-period consumption model with sticky nominal income and ambiguity
about the inflation process. Applying the results developed in Section 3, we show that the inflation
forecasts that arise from this model are consistent with the type of cross-sectional distribution of
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bias and persistence documented above.

4.2 Model

Household problem There is a finite number of household groups indexed by g ∈ 1, . . . , N ,
each differing in their nominal income level, denoted by Yg. Within each income group, there is a
continuum of households indexed by i. We consider a simple, stylized consumption-saving problem
where households plan their consumption only for periods t and t + 1. The utility function of the
household is given by

U (Ci,g,t, Ci,g,t+1) =
C1−ν
i,g,t − 1

1− ν
+ β

C1−ν
i,g,t+1 − 1

1− ν
,

where ν controls the degree of risk aversion of households.

Nominal income is rigid between t and t+1. A household in group g receives nominal income PtYg/2

in each period. Therefore, their budget constraint is given by

PtCi,g,t + Pt+1Ci,g,t+1 = PtYg.

Let πt+1 ≡ (Pt+1 −Pt)/Pt denote the inflation rate. The budget constraint for household i can then
be rewritten as

Ci,g,t + (1 + πt+1)Ci,g,t+1 = Yg.

That is, a higher inflation rate makes consumption tomorrow more expensive relative to consumption
today, adversely affecting households due to the nominal rigidity in their income.24 In this problem,
households only face uncertainty about the inflation rate. Once the belief about future inflation is
determined, the optimal consumption plan follows. The following lemma directs us to concentrate
on inflation expectations.

Lemma 4.1. Around the zero-inflation steady state:

1. The optimal consumption change, ci,g,t, is proportional to the household’s subjective expectation
about inflation

ci,g,t =
β1/ν

1 + β1/ν
Fi,g,t [πt+1] ; (4.2)

24The assumption of complete nominal income rigidity is made only for simplicity. What is important is that, relative
to goods prices, nominal income changes at a slower rate.
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2. The quadratic approximation of the utility function U(Ci,g,t, Ci,g,t+1) is given by

U ≈ Q(Fi,g,t [πt+1] , πt+1) = const − δg (Fi,g,t [πt+1]− πt+1)
2 − χgπt+1 − γgπ

2
t+1, (4.3)

where δg, χg, and γg are positive, when ν > 1, and satisfy

δg, χg, γg ∝ Y 1−ν
g .

The first part of Lemma 4.1 states that there is a one-to-one mapping between the optimal choice
of consumption and the household’s subjective expectation about the inflation rate. A higher in-
flation expectation implies that future goods become more expensive relative to current goods, and
households have an incentive to increase their current consumption.

Condition (4.2) allows us to express the utility in terms of expected inflation and actual inflation, since
future consumption depends on the realized inflation. This quadratic approximation of the utility
function is nested within the general specification (3.3) in Section 3.1. The utility function (4.3)
reveals two important properties that are crucial for matching the data later on: (1) ceteris paribus,
higher inflation lowers household welfare since both χg and γg are positive; (2) a higher level of
income reduces households’ exposure to variations in inflation since (δg, χg, γg) are decreasing in Yg.

Subjective expectations The inflation rate, πt, follows an exogenous AR(1) process,

πt = ρπt−1 + ηt, with ηt ∼ N
(
0, σ2η

)
,

and at each period t, household i receives a noisy private signal,

xi,g,t = πt + ϵi,g,t, with ϵi,g,t ∼ N
(
0, σ2ϵ

)
.

The information set of household i at time t is Ii,g,t = {xi,g,t, xi,g,t−1, . . .}. So far, this specification
is similar to the structure used in the literature that studies survey evidence on inflation forecasts
(Coibion and Gorodnichenko, 2015; Bordalo, Gennaioli, Ma, and Shleifer, 2020). It is also worth
noting that the received information is independent of the household’s income level.

We depart from rational expectations by allowing agents to perceive ambiguity about the mean of
the innovation to inflation,

ηt ∼ N
(
µt, σ

2
η

)
, and µt ∼ N

(
0, σ2µ

)
,

where, again, σ2µ corresponds to the amount of ambiguity. Let h(xti,g) denote the households’ strategy
in forming expectations, i.e., Fi,g,t[πt+1] = h(xti,g). The mapping from subjective inflation expecta-
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tions to optimal consumption in period t allows us to transform the original optimal consumption
problem into an optimal forecasting problem that can be embedded into our general theoretical
framework. Following the specification from Section 3, households maximize the following objective
function:

ϕ−1

(∫
µt

ϕ
(
Eµt

i,g,t

[
Q
(
h
(
xt
)
, πt+1

)])
p
(
µt
)
dµt
)
. (4.4)

By establishing the equivalence between the optimal forecasting problem (4.4) and the original opti-
mal consumption problem, we are implicitly assuming that households respond to the survey ques-
tions about inflation by reporting beliefs that are consistent with their consumption decisions. This
assumption is common in studies that connect survey data on expectations to structural models with
ambiguity-averse agents, such as Bhandari, Borovička, and Ho (2023) and Pei (2023).

4.3 Inflation Forecasts under Ambiguity

Bayesian benchmark We begin by muting ambiguity (σ2µ = 0) and considering the predictions
of this model under standard Bayesian expectations, characterized in the following proposition.

Proposition 4.1. The Bayesian forecast is a weighted sum of the prior and the new signal,

Ei,g,t[πt+1] = ω Ei,g,t−1[πt] + (ρ− ω)xi,g,t, (4.5)

and the average forecast error satisfies

πt+1 − Eg,t[πt+1] =
1

1− ωL
ηt+1,

where the persistence ω is given by

ω =
1

2

ρ+ σ2ϵ + σ2η
ρσ2ϵ

−

√(
ρ+

σ2ϵ + σ2η
ρσ2ϵ

)2

− 4

 .

Without ambiguity, households underreact to their signals due solely to the noise in their observa-
tions. As a result, the aggregate forecast errors are persistent over time, as discussed in Coibion
and Gorodnichenko (2015). However, the persistence ω does not correlate with household income
levels. Moreover, the unconditional mean of household forecasts coincides with that of actual infla-
tion, leaving no room for permanent bias. These properties are inconsistent with the empirical facts
documented in Section 4.1.

Ambiguity-averse households When households are ambiguity-averse, their income level mat-
ters for their subjective beliefs. The following characterization directly applies the results developed
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in Section 3.

Proposition 4.2. With ambiguity aversion, the individual subjective forecast satisfies

Fi,g,t[πt+1] = ϑgFi,g,t−1[πt] + (1 + rg)(ρ− ϑg)xi,g,t + (1− ϑg)Bg, (4.6)

and the average forecast error obeys

πt+1 −Fg,t[πt+1] =
1 + rg
1− ϑgL

ηt+1 −
rg

1− ρL
ηt+1 − Bg,

where the persistence ϑg is given by

ϑg =
1

2

ρ+ (1 + wg)σ
2
η + σ2ϵ

ρσ2ϵ
−

√(
ρ+

(1 + wg)σ2η + σ2ϵ
ρσ2ϵ

)2

− 4

 < ω, (4.7)

with rg > 0, wg > 0, and Bg > 0.

Condition (4.6) shows that the subjective inflation expectation follows a law of motion similar to the
Bayesian one but with several important modifications. First, households consistently overestimate
the inflation rate by an amount determined by the bias term Bg.

Second, the persistence of forecast errors is smaller than in the Bayesian case, ϑg < ω, for all g.
Households react to their signals as if they are overconfident à la Broer and Kohlhas (2022), as the
perceived signal-to-noise ratio (1 + wg)σ

2
η/σ

2
ϵ is larger. Thus, households rely less on their prior

means, which reduces the persistence of their forecasts.

Third, households exhibit an additional overreaction to their current signals relative to a Bayesian
rule, captured by the term 1+rg. The forecasting rule (4.6) shares similar properties to the one under
diagnostic expectations (Bordalo, Gennaioli, Ma, and Shleifer, 2020) in which forecasters overweight
representative states. This additional response to the signal distinguishes it from a Bayesian rule.

In the setup with ambiguity, the magnitudes of overreaction and bias endogenously depend on how
inflation enters households’ payoff functions. As emphasized in Lemma 4.1, the parameters governing
a household’s exposure to inflation decrease with their income level. This reduced exposure is
isomorphic to a lower degree of ambiguity aversion. As a result, higher-income households are
effectively less concerned about ambiguity, and their forecasting strategy is more aligned with the
Bayesian benchmark. It follows that, qualitatively, richer households are less biased and their forecast
errors are more persistent, which is consistent with the patterns observed in the data.
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4.4 Results

To bring the model to the data, we set ρ = 0.88 and ση = 0.72 to fit the actual inflation process,
and fix the household’s discount factor to β = 0.99. We normalize average income to 1, and set Yg
to match the share of income of each group in the MSC. The remaining parameters are the standard
deviation of private information, σϵ, the amount of ambiguity, σµ, the degree of ambiguity aversion,
λ, and the degree of relative risk aversion, ν. We calibrate these parameters to match the persistence
and bias of inflation forecast errors displayed in Figure 4.1. Operationally, we minimize

∑
g

(
Biasdata

g − Biasmodel
g

)2
+
(

Persistencedata
g − Persistencemodel

g

)2
.

The bias and persistence in the data are computed from the MSC using equation (4.1), and their
model counterparts are the theoretical moments derived from Proposition 4.2.

Figure 4.2: Goodness of Fit.
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Table 4.1 presents the calibrated parameters. The model fit requires both signal noise and perceived
ambiguity. Figure 4.2 displays the goodness of fit of our calibrated model. Given its rather parsimo-
nious structure, our model captures the cross-sectional patterns of bias and persistence of inflation
forecast errors reasonably well: richer households tend to exhibit less bias in their inflation forecasts
but more persistent forecast errors.

It is challenging to capture these cross-sectional patterns in the Bayesian-expectation model without
ambiguity aversion, where bias is zero and persistence does not vary with income. If households
perceive ambiguity (σµ > 0) but their preference is ambiguity-neutral (λ = 0), the persistence of
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Table 4.1: Calibrate Parameters

Param. Value Related to

σϵ 4.11 std of noise in private signals
σµ 0.82 amount of ambiguity
λ 0.23 degree of ambiguity aversion
ν 1.46 risk aversion

forecast errors would increase with income, but bias would still not be present.

Figure 4.3: Conditional and Unconditional Moments of Subjective Beliefs
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Note: Panel A reports the theoretical CG and BGMS regression coefficients for each income group. Panel B reports
the theoretical impulse response of the the consensus inflation expectation for the median income group.

Connection with existing survey evidence The predictions of our model are also broadly
consistent with existing survey evidence on expectations. Due to dispersed, noisy information, the
consensus forecast underreacts to new information, implying a positive correlation between forecast
errors and forecast revisions, as documented in Coibion and Gorodnichenko (2015) using the SPF. At
the individual level, this correlation would necessarily be equal to zero under rational expectations.
Bordalo, Gennaioli, Ma, and Shleifer (2020) show that, in the SPF, forecasters tend to overreact to
their signals, resulting in a negative correlation at the individual level.25 The left panel of Figure 4.3

25To detect under-reaction at the consensus level and over-reaction at the individual level, we run group-specific CG
and BGMS regressions of forecast errors on forecast revisions:

CG : πt+1 − Ēt [πt+1] = βCG
(
Ēt [πt+1]− Ēt−1 [πt+1]

)
+ ϵt+1,

BGMS : πt+1 − Eit [πt+1] = βBGMS (Eit [πt+1]− Eit−1 [πt+1]) + ϵit+1,
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displays our model’s prediction for these two coefficients across different income groups, which are
consistent with the existing evidence. Notably, the CG coefficient increases with household income
while the BGMS coefficient decreases in magnitude, which are the footprints of ambiguity aversion.
In Appendix H.2, we discuss the empirical counterparts of the CG and BGMS regression coefficients
in the MSC and the SCE. The direction of change in the coefficients, as a function of income, is
broadly consistent with the model predictions though the magnitudes are not directly comparable.26

The right panel shows the response of the average inflation forecast for the median income group
to an inflationary shock over time. Due to the additional overreaction, associated with 1 + rg, the
average forecast actually overshoots the true inflation rate. The implied sign-switching pattern is
consistent with the empirical findings in Angeletos, Huo, and Sastry (2021).27

Robustness and alternatives In our model, we focus on the effect of inflation on labor income,
thereby abstracting from the balance-sheet effects which Doepke and Schneider (2006) have docu-
mented could be more detrimental to richer households. In Appendix H.3, we argue, using data
from the Survey of Consumer Finances, that these effects are unlikely to dominate the labor-income
effects, especially for the bottom four quintiles of the income distribution, for whom capital and
business income account for less than 7% of their total income. The claim that poorer households
are more affected by inflation is also supported by the findings in Cao, Meh, Ríos-Rull, and Terajima
(2021), who compute the welfare effects of inflation across the distribution in a quantitative general
equilibrium model. We also document, using the Census Bureau’s House Purse Survey, that poorer
households consistently report higher levels of inflation concern. This is particularly relevant to our
analysis, as the mechanism hinges directly on households’ subjective perceptions of inflation. These
last points are also reassuring against potential general equilibrium effects overturning the direction
of inflation effects.28

The CAAA preferences used above are non-homothetic, and our mechanism relies on this to gener-
ate the disproportionate effect of inflation on poorer households (a notion similar to Cerreia-Vioglio,
Maccheroni, and Marinacci (2022)). Alternatively, we could assume that households have non-
homothetic preferences toward risk, due to borrowing limits or minimum consumption requirements.
Then, homothetic preferences toward ambiguity would yield similar model predictions. Our assump-
tions are designed to align with our general theoretical framework, but this should be mainly seen

using artificial datasets simulated by our model.
26Due to limitations of the MSC and SCE data we cannot exactly construct the term structure of the forecasts. In

Appendix H.2, we provide an approximate version of these regression coefficients.
27Note that in the IRF, we do not include the bias term. When conducting the projection method in Angeletos,

Huo, and Sastry (2021), such bias terms are absorbed by the constant regressor.
28Our mechanism hinges on households’ perceived joint distribution of aggregate variables, which may diverge from

economic theory. As shown by Candia, Coibion, and Gorodnichenko (2020) and Han (2023), households typically
associate higher inflation with lower real GDP growth. Our model reflects this by linking higher inflation with reduced
real income, which broadly aligns with households’ perceptions of inflation.
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as a convenient modeling device.

There are also reasonable alternative explanations for at least part of the evidence described above.
For instance, Broer, Kohlhas, Mitman, and Schlafmann (2022) show that the relationship between
sensitivity to information and income levels can result from rational inattention, though this logic
cannot explain the observed average bias. Another possibility is that households effectively report
forecasts about the inflation rates of their own consumption baskets, and that individual inflation
rates differ by households’ income levels. However, as shown in Kaplan and Schulhofer-Wohl (2017),
the annual inflation difference between the top and bottom income groups is about 1%, which can
only account for half of the difference in bias, while the persistence of inflation rates across households’
income is virtually identical.29 Yet another explanation is that individual forecasts are subject to
exogenous shocks. This could help explain the observed pattern between forecast persistence and
income levels, for instance, but only if these exogenous shocks are sufficiently correlated across
individuals within income groups and are more volatile for poorer households. Overall, we think our
theory and these alternatives are complementary, and they jointly depict a more complete picture of
the expectation formation process. Our preference for the ambiguity aversion channel is due to its
ability to simultaneously speak to the patterns of bias and persistence in a parsimonious framework.

5 Application: Optimal Policy under Ambiguity

When agents in the private sector are ambiguity-averse, how should policy respond to changes in
fundamentals, and how does additional sensitivity and bias affect policy design? In this section, we
explore a policy game that builds on Barro and Gordon (1983) to shed light on these questions.

5.1 Environment

Time-consistent policy rule The policymaker chooses the inflation rate, π, so as to minimize
the following social-loss function

L = E[U2 + ω(π − π∗)2],

where U is the unemployment rate, π is the endogenous inflation rate, and π∗ is an exogenous
random inflation target that is drawn according to π∗ ∼ N (π, σ2π).30 The parameter ω balances the
preference for lower unemployment against smaller deviations from the inflation target.

The policymaker faces a static Phillips curve that specifies how the unemployment rate reacts to
average inflation surprises,

U = −β(π −F [π]),

29See Table 3 in the main text and Figure 8 in the online appendix of Kaplan and Schulhofer-Wohl (2017).
30We normalize π = 0 later on, but the main results do not hinge on this normalization.
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where β is the slope of the Phillips curve. The unemployment rate is lower when actual inflation
exceeds the average expected inflation. Importantly, agents in the private sector may not be rational,
and the expectation operator corresponds to agents’ subjective expectations. We have implicitly
normalized the natural unemployment rate to zero, U∗ = 0. Therefore, if π = F [π] = π∗, the
policymaker would achieve the first-best outcome.

We consider a discretionary scenario in which the policymaker cannot commit to a policy ex ante.
As in Barro and Gordon (1983), the time-consistent inflation policy is given by

π = (1− α)π∗ + αF [π], with α ≡ β2

ω + β2
. (5.1)

That is, the inflation rate is a weighted average between the exogenous inflation target and the
economy-wide subjective inflation expectation.

Subjective expectations The exogenous inflation target cannot be perfectly observed by the
public, and each agent i receives a private, noisy signal about it:

xi = π∗ + ϵi, with ϵi ∼ N (0, σ2ϵ ).

The noise here captures the notion that agents are inattentive to signals due to either attention
costs or cognitive constraints. In addition to the informational frictions, agents in the private sector
perceive ambiguity about the exogenous inflation target π∗. More specifically, agents believe that
the mean of the target is ambiguous, that is,

π∗ ∼ N (µ, σ2π), and µ ∼ N (π, σ2µ),

where σµ controls the amount of ambiguity.

The payoff of an agent depends on their subjective expectation and on inflation itself,

u(Fi[π], π) = −(Fi[π]− π)2 − χπ.

That is, agents care about the accuracy of their forecast, and an increase in the inflation rate directly
reduces their utility. This utility function can be seen as a reduced-form version of the micro-founded
structure introduced in Section 4,31 which allows for biased subjective beliefs, in line with the data.
In contrast with Section 4, inflation here is an endogenous equilibrium object that depends on the
average subjective inflation expectation. As a result, the coordination motive is at play in shaping
the subjective expectations.

31For simplicity, we abstract from the complications due to the second-order term and effectively assume households
are homogeneous except for the dispersed information.
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5.2 Optimal inflation policy

In equilibrium, the optimal policy that satisfies condition (5.1) can be characterized by a pair of
policy parameters, R and C, such that

π = Rπ∗ + C,

where R represents the responsiveness to the inflation target, and C determines the average level of
inflation. How do aggregate inflation forecasts affect the optimal inflation policy?

We start with a rational expectations benchmark with informational frictions but in which agents
do not perceive ambiguity.

Proposition 5.1. With rational expectations (σ2µ = 0), the optimal policy rule is given by

RRE = 1− α+ α
σ2π

σ2π + (1− α)−1σ2ϵ
≤ 1, and CRE = 0.

Without ambiguity, the discretionary policy (5.1) can be viewed as a beauty contest game. When
individual agents form expectations, they need to forecast the forecast of others, and the strength of
these considerations is regulated by α. In the end, the average expectation is given by

E[π] =
σ2π

σ2π + (1− α)−1σ2ϵ
π∗,

where (1−α)−1 captures the discounting of private signals due to the coordination motive. Effectively,
agents form their expectations using (w,α)-modified signals as in Section 3 with w = 0. Although
the responsiveness is dampened due to dispersed information, the inflation rate remains proportional
to the target, and CRE = 0. With full information rational expectations (FIRE), the dampening
effect vanishes, and the endogenous inflation perfectly tracks the target: RFIRE = 1.

Next, consider the case in which agents are ambiguity-averse.

Proposition 5.2. With ambiguity aversion, the aggregate subjective expectation is given by

F [π] = Sπ∗ + B,

where
S =

(1 + w)σ2π
(1 + w)σ2π + (1− α)−1σ2ϵ

, B = χλ (1− α+ αS) (1− S)σ2µ,

and
w =

σ2µ/σ
2
π

1− 2λ (1− α)2 (1− S)2 σ2µ
.
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The implied inflation policy satisfies

R = 1− α+ αS ∈ [RRE, 1], and C = αB.

Proposition 5.2 echoes our earlier emphasis on the effects of ambiguity aversion: the sensitivity to
signals is amplified through the endogenously perceived prior, captured by the factor (1 + w), and
the expectation is permanently biased upwards by B.

The coordination motive, controlled by α, affects the equilibrium outcome in two ways. First, the
policymaker internalizes the behavioral patterns of the private sector and adjusts the actual inflation
process accordingly. This leads to higher responsiveness, R ≥ RRE, and a lifted intercept, C > 0.
The extent to which the inflation policy inherits this behavior from the private sector is mechanically
increasing in the degree of coordination motive α. Second, the effect of ambiguity on an agent’s
subjective belief also hinges on the strength of the coordination motive, as both w and B depend
on α directly. Different from the analysis in Section 3, the economy here is inefficient even with
complete information, and the socially optimal coordination level à la Angeletos and Pavan (2007)
is α̂ ≡ 1− (1− α)2, which is the key statistics that determines effects of ambiguity via w.32

Figure 5.1: Inflation Policy with and without Ambiguity

Figure 5.1 depicts the increased slope and shifted intercept that result from introducing ambiguity
aversion. The red-dashed line represents the inflation policy under FIRE, which aligns exactly with
the 45-degree line. The black-broken line displays the policy rule with noisy information but without
ambiguity. Relative to FIRE, the only change is the dampened responsiveness. In both cases,
there is no bias. When agents are ambiguity-averse, we get the blue-solid line. The slope of the

32We provide a detailed analysis of inefficient economies in Appendix B.2.
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policy approaches the one under FIRE, but this enhanced responsiveness is accompanied by a higher
intercept due to the presence of bias in agents’ forecasts.

5.3 Ambiguity and social welfare

Given an inflation policy rule, social welfare losses can be expressed as follows:

L = E[U2 + ω(π − π∗)2] =
ω

α

[
(1−R)2σ2π + C2

]
.

The inflation policy under FIRE, with R = 1 and C = 0, achieves the first best. Further, either an
increase in responsiveness, towards R = 1, or a reduction in the magnitude of the intercept, C, would
improve welfare. Intuitively, the policymaker would like the public to pay attention to the inflation
target, facilitating the implementation of the desired inflation level. Any irrelevant deviation of the
average expectation from π∗ is socially inefficient.

Figure 5.2: Bias, Sensitivity, and Social Welfare

(A) Bias and sensitivity (B) Social loss L

When information is noisy, the responsiveness of the private sector is dampened and the introduction
of ambiguity can help approach the policy under FIRE. As can be observed in Figure 5.1, the
combined effect of higher responsiveness and higher bias can lead to a better approximation of the
FIRE first-best policy. This result is formalized in the following proposition.

Proposition 5.3. Fixing the amount of noise σ2ϵ , there exists an intermediate level of ambiguity
σ2µ > 0 that minimizes the social loss L.

Figure 5.2 helps illustrate the basic idea. The left panel shows how the responsiveness, R, and the
intercept, C, vary with the amount of ambiguity, σµ. On one hand, the introduction of ambiguity
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enhances the responsiveness to signals, as the private sector shifts attention from their ambiguous
priors to their signals, which contain relevant information about the policy target. On the other
hand, it generates bias, as the private sector becomes increasingly concerned about the realization of
a high-inflation model. These two competing effects generate a U -shape social loss function, which
is minimized at an intermediate level of ambiguity.

This mechanism could justify, for instance, the recent switch by the Fed from a fixed inflation target
to average inflation targeting (AIT). Jia and Wu (2023) argue that the adoption of AIT by the Fed
in 2020 introduced ambiguity about the target to the extent that the time horizon used to compute
the average is unclear.33

Alternative type of bounded rationality So far, we have rationalized the bias in agents’ fore-
casts with ambiguity aversion. However, other types of bounded rationality could lead to the observed
bias and this could lead to different policy implications.

As an example, consider a heterogeneous prior approach à la Angeletos, Collard, and Dellas (2018).
Specifically, suppose that each agent i understands that π∗ ∼ N (π, σ2π), but believes that all other
agents perceive the inflation target with a bias, π∗ ∼ N (π + B, σ2π). Further, suppose all agents
continue to receive a noisy signal about the inflation target. In this case, without ambiguity, the
optimal inflation policy also features a non-zero intercept, but the welfare implication is significantly
different.

Proposition 5.4. With heterogeneous priors, the inflation policy rule is given by

R = RRE, and C = α
(
RRE − 1

)
B.

The social loss monotonically increases with B.

In contrast to the results derived above, if the observed bias in inflation forecasts is attributed to
heterogeneous priors, a higher bias necessarily implies lower welfare. Since there is no concomitant
effect on the sensitivity to signals, bias simply leads to less accurate average expectations.

6 Connection with Robust Preference

In this section, we document an intimate connection between the smooth model of ambiguity and
the robust preferences model (Hansen and Sargent, 2001a,b). Although these two approaches to
model uncertainty are conceptually different,34 the main theoretical insights developed earlier about

33Jia and Wu (2023) also show that the ambiguity generated by this switch can be beneficial as it allows the Fed
to increase its credibility. This benefit of ambiguity is different from the one we highlight. Their setup abstracts from
ambiguity aversion, which plays a crucial role in our results.

34We refer to Hansen and Marinacci (2016) for a comprehensive discussion.
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sensitivity and bias, along with the observational equivalence to Bayesian forecasts, also apply to
models with robust preferences.

In parallel with the smooth model of ambiguity, we consider an efficient economy in which the utility
function is given by

u(kit,Kt, ξt) = −1

2

[
(1− α) (kit − ξt)

2 + α (kit −Kt)
2
]
− χξt −

1

2
γξ2t ,

and the signals follow the same general processes described in Section 3.1.

We model robust preferences following Hansen and Sargent (2005). Agents worry about potential
model misspecification and consider a set of alternatives:

max
kit

min
mit

Eit

[
u(kit,Kt, ξt)mit +

1

ϖ
mit logmit

]
(6.1)

s.t. mit > 0, and Eit [mit] = 1.

Here, each random variable mit introduces a distorted distribution, generating an alternative model,
where Eit[mit logmit] corresponds to the relative entropy. The parameter ϖ controls the extent
to which agents desire robustness. Agents then choose their strategies to optimize the worst-case
scenario across the set of models under consideration.

Just as in the smooth model of ambiguity, under robust preferences, the subjective expectations
and strategies of agents are jointly determined. Despite these complex interactions, the equilibrium
strategy ultimately takes a simple form similar to the one in the smooth model.

Proposition 6.1. The linear strategy under robust preferences takes the following form

g
(
xti
)
= (1 + r) p (L;w,α)xit + B.

1. The polynomial matrix p(L;w,α) is the Bayesian forecasting rule with the (w,α)-modified signal
process and w satisfies

w =
κ2

1− α
; (6.2)

2. The additional amplification, r, satisfies

r =
κ1 − κ2

1− α+ κ2
; (6.3)

3. The level of bias, B, satisfies
B = χ

r

γ
. (6.4)

40



The two endogenous scalars (κ1,κ2) are such that

κ1 − κ2 = ϖγ (1− α+ κ1)Vit(ξt) +ϖγ (α− κ2)COVit(Kt, ξt),

κ2 =
α (1− α)

γ
(κ1 − κ2)−ϖα (1− α)DISP(kit),

where Vit(ξt), COVit(Kt, ξt), and DISP(kit) denote the conditional volatility of the fundamental,
the conditional covariance between the aggregate action and the fundamental, and the unconditional
cross-sectional dispersion of individual actions, respectively.

Under robust preferences, agents want their actions to be robust across various models. In contrast,
the smooth model of ambiguity is isomorphic to a setup where agents look for robustness across
various priors about a fixed set of possible models (Hansen and Marinacci, 2016). Despite the
conceptual differences between these two approaches, Proposition 6.1 shows that they are, in a
sense, observationally equivalent. The following corollary in turn provides the condition under which
the two models are equivalent in terms of individual strategies, with only a difference in the amount
of bias.

Corollary 6.1. Fix the objective environment. For a robust preferences model that satisfies

1. w ≥ 0, r ≥ 0,S ≤ 1,

2. (1− S)
(

γw
(1+w)r −

(1−α)(1+w)r
w

)
+ γ > (1− α)V(ξt−Kt)

V(ξt) ,

there exists a smooth model of ambiguity such that the equilibrium strategies in these two models are
identical up to a constant.

Although the equilibrium strategies share a similar transformation in terms of Bayesian expectations,
there are still some subtle differences between the two approaches. In the smooth model of ambiguity,
we focus on the case where the model uncertainty is only about the prior mean of the fundamental.
With robust preferences, the model uncertainty is about the entire stochasticity of the environment.
When determining the endogenous amplification parameter w, the former only requires unconditional
moments of aggregate variables, while the latter requires conditional moments of both aggregate and
individual variables.

Another difference between the two approaches is that the smooth model allows a separation between
the attitude towards ambiguity, λ, and the amount of ambiguity, σµ, whereas the robust preferences
model is more parsimonious, with a single parameter, ϖ, to control the overall concern about model
misspecification. To demonstrate the quantitative difference between the two approaches, we re-
visit the inflation-expectations application. Specifically, we keep the objective environment fixed,
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Figure 6.1: A Comparison between SM and RP
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Note: This figure compares the predictions on the bias and persistence of forecast errors between the smooth model
and the robust preferences model. Each blue circle corresponds a smooth model with a choice of (λ, σ2

µ). Each red dot
corresponds to a robust preferences model with a choice of ϖ. The objective environment is fixed the same as that in
Section 4.

including the exogenous stochastic process of inflation, ρ and ση, the private signal noise, σϵ, and the
preference parameters, β and ν. We examine the bias and persistence of forecast errors for households
with median income. For the smooth model, we vary both the degree of ambiguity aversion, λ, and
the amount of ambiguity, σ2µ. For the robust preferences model, we vary the parameter controlling
the preference for robustness, ϖ.

Figure 6.1 presents the joint distribution of bias and persistence of forecast errors. Each blue circle
corresponds to the outcome under a specific pair of (λ, σ2µ) in the smooth model, while each red
diamond point represents the outcome under a particular choice of ϖ in the robust preferences
model. Both approaches yield the same qualitative prediction: higher bias is associated with lower
persistence. Moreover, due to the additional degree of freedom in the smooth model, the scatter plot
covers the line implied by the robust preferences model. Quantitatively, the two approaches also
produce comparable predictions.

7 Conclusion

In this paper, we study the effects of ambiguity in a general equilibrium environment with incom-
plete information. We provide an equivalence result that characterizes the equilibrium strategy as
the solution to an adjusted single-agent Bayesian forecasting problem. Ambiguity aversion induces
additional sensitivity to signals and a pessimistic bias, with both effects depending endogenously
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on agents’ payoffs and the market structure. These properties allow us to match salient patterns
observed in survey evidence on expectations, which are difficult to explain with rational expectation
models. We also show that additional sensitivity and bias in subjective beliefs can change the effect
of policy instruments, and that the exact micro-foundation for such belief distortions matters for
policy design.

While our focus thus far has been on payoff structures that are homogeneous across agents, it would
be interesting to explore the extent to which our main insights can be extended to network games.
For example, firms in production supply chains may have concerns about their upstream suppliers
and downstream customers perceiving different models. Another direction for future research is to
explore how policymakers should incorporate substantial deviations of subjective beliefs from rational
ones into the design of monetary and fiscal policies in quantitative models.
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A Proofs of Main Results

In this appendix, we present the proofs of the main results from Section 3. We start by proving Proposition 3.2,
which yields the fixed point conditions that characterize the equilibrium. We proceed by proving the general
equivalence result, Proposition 3.3, based on which we can prove the existence of equilibrium, Proposition
3.1, as well as the comparative statics of sensitivity S and bias B with respect to the coordination motive α,
Proposition 3.5.

Proof of Proposition 3.2. The equilibrium concept from Definition 3.1 is equivalent to the notion of ex-ante
equilibrium from Hanany, Klibanoff, and Mukerji (2020). It is equivalent to the characterization of sequential
equilibria with ambiguity (SEA) when conditional preferences are updated using the smooth rule of updating
proposed in Hanany and Klibanoff (2009). The key for the equilibrium refinement of SEA is to ensure
dynamic consistency, in the sense that ex-ante contingent plans are respected ex-post with the arrival of new
information. Specifically, conditional on the realization of any possible history of private information, xti, the
optimal strategy of agent i maximizes their conditional preference, given by

ϕ−1

(∫
µt

ϕ
(
Eµt [

u (kit,Kt, ξt) | xti
])
p̃
(
µt | xti

)
dµt

)
, (A.1)

where Eµt

[u (kit,Kt, ξt) | xti] denotes the expected utility conditional on xti under a particular model µt. The
interim belief system is characterized by a posterior belief p̃ (µt | xti) that follows the smooth rule of updating:

p̃
(
µt | xti

)
∝

ϕ′
(
Eµt

[u (k∗it,K
∗
t , ξt)]

)
ϕ′ (Eµt [u (k∗it,K

∗
t , ξt) | xti])︸ ︷︷ ︸

Weights

p
(
xti | µt

)
p
(
µt
)︸ ︷︷ ︸

Bayesian Kernel

,

where {k∗it (xti)}xt
i,i

denotes the equilibrium strategy profiles in the cross-section of the economy and K∗
t ≡∫

i
k∗itdi denotes the equilibrium aggregate action.

The first-order condition of maximizing (A.1) with respect to kit yields∫
µt

ϕ′
(
Eµt [

u (kit,Kt, ξt) | xti
]) ∂Eµt

[u (kit,Kt, ξt) | xti]
∂kit

p̃
(
µt | xti

)
dµt = 0.

Since
∂Eµt

[u (kit,Kt, ξt) | xti]
∂kit

= kit − (1− α)Eµt [
ξt | xti

]
− αEµt [

Kt | xti
]
,

the first-order condition can be used to solve for the optimal strategies {k∗it (xti)}xt
i,i

,

k∗it(x
t
i) =

∫
µt

(
(1− α)Eµt [

ξt | xti
]
+ αEµt [

K∗
t | xti

])
p̂
(
µt | xti

)
dµt,

with

p̂
(
µt | xti

)
≡

ϕ′
(
Eµt

[u (k∗it,K
∗
t , ξt)]

)
p (xti | µt) p (µt)∫

µt ϕ′ (Eµt [u (k∗it,K
∗
t , ξt)]) p (x

t
i | µt) p (µt) dµt

,
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which completes the proof.

Proof of Proposition 3.3. Following Huo and Pedroni (2020), we first consider a truncated version of our
model. After solving this truncated version, the appropriate limits yield the desired result.35

Fix t and define

ϑ ≡ ξt =

∞∑
k=0

akηt−k.

Let ϑq denote the MA(q) truncation of ϑ, such that

ϑq =

q∑
k=0

akηt−k,

and let xNp,i ≡ {xp,it, · · · , xp,it−N}, with xp,it−k denoting the MA(p) truncation of xit−k.

Consider the truncated problem of forecasting the the fundamental ϑq given xNp,i. To further ease notation,
define

η ≡


ηt
...

ηt−T

 , µ ≡


µt

...
µt−T

 , ϵi ≡


ϵit
...

ϵit−T

 , and νi ≡

[
η

ϵi

]

Let R denote the length of xNp,i, and N the length of ϵit. It follows that, there exists a vector a with length
u ≡ T + 1, and a matrix B with dimensions n×m, where n ≡ R (T + 1) and m ≡ (1 +N) (T + 1), such that
the truncated fundamental and the private signals are given by

θ ≡ ϑq = Aνi, with A ≡
[
a′, 0′m−u,1

]
, and xi ≡ xNp,i = Bνi,

where 0m−u,1 is an (m− u)× 1 vector of zeros. In the objective environment, νi is normally distributed,

νi ∼ N (0,Ω) , with Ω =

[
σ2
η Iu 0

0 Ξ

]
,

where Iu denotes the identity matrix of size u and Ξ denotes the variance-covariance matrix of the (m−u)×1

vector of idiosyncratic shocks, ϵi. Subjectively, agents believe that η is drawn from a Gaussian distribution
with variance-covariance matrix σ2

η Iu but there is uncertainty about its prior mean, denoted by µ. Ambiguity
is then captured by the perception that

η ∼ N
(
µ, σ2

η Iu
)
, and µ ∼ N (0,Ωµ) , with Ωµ ≡ σ2

u Iu.

From Proposition 3.2, we know that the best response of agent i satisfies

ki =

∫
µ

(
(1− α)Eµ [θ | xi] + αEµ [K | xi]

)
p̂ (µ | xi) dµ, (A.2)

35See Online Appendix A.1 of Huo and Pedroni (2020) for detailed proofs.
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with
p̂ (µ | xi) ∝ exp

(
−λEµ

[
u(ki,K, θ)

])
p (xi | µ) p (µ) .

We proceed by using a guess-and-verify strategy. First, we guess a symmetric linear equilibrium that

ki = h′Bνi + h0 ∀i.

We can show that ex-ante expected utility, under a particular model µ, is such that

Eµ [u (ki,K, θ)] = − µ′
[
1

2
(1− α)K (A′ −B′h) (A− h′B)K′ +

1

2
γKA′AK′

]
µ (A.3)

+

[
1

2
(1− α)h0 (A− h′B)K′ +

1

2
χAK′

]
µ+ µ′

[
1

2
(1− α)h0K (A′ −B′h) +

1

2
χKA′

]
−1

2
(1− α) (A− h′B)Ω (A′ −B′h)− 1

2
(1− α)h20 −

1

2
αh′B (Im − Λ)ΩB′h− 1

2
γAΩA︸ ︷︷ ︸

independent of µ

,

where matrices K and Λ are such that

K ≡ [Iu, 0u,m−u] , and Λ ≡ K′K.

At the same time, we have that

p (µ | xi) ∝ exp

(
−1

2
µ′
(
KB′ (BΩB′)

−1
BK′

)−1

µ+
1

2
µ′K (BΩB′)

−1
xi +

1

2
x′i (BΩB′)

−1 K′µ

)
.

It follows that

p̂ (µ | xi) ∝ exp

(
−1

2
µ′S−1µ+

1

2
µ′S−1 (Mxi + π) +

1

2
(Mxi + π)

′
S−1µ

)
,

where matrices M , π, and S are such that

M ≡ SK (BΩB′)
−1
, π ≡ S [−λ (1− α)h0K (A′ −B′h) + λχKA′] ,

and
S ≡

(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ − λ [(1− α)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]
)−1

.

Accordingly, we can show that the subjective expectations are such that∫
µ

Eµ [θ | xi] p̂ (µ | xi) dµ = Txi + (A− TB)K′
[
SKB′ (BΩB′)

−1
xi + π

]
,

and ∫
µ

Eµ [K | xi] p̂ (µ | xi) dµ = Hxi + h′ (BΛ−HB)K′
[
SKB′ (BΩB′)

−1
xi + π

]
+ h0,
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where matrices T and H are given by

T ≡ AΩB′ (BΩB′)
−1
, and H ≡ BΛΩB′ (BΩB′)

−1
.

Therefore, matching coefficients leads to the following equilibrium conditions for h and h0,

h′ = (1− α)T + αh′H+ [(1− α) (A− TB) + αh′ (BΛ−HB)]K′SKB′ (BΩB′)
−1
, (A.4)

and
(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′π. (A.5)

In what follows, we first focus on equation (A.4). Through a sequence of lemmas, we show that this fixed-point
problem for h can be recast as the solution of a pure forecasting problem. We then proceed to characterize h0
using equation (A.5).

The next lemmas are organized as follows. Lemma A.1 rewrites the equilibrium condition for h described above
as a beauty-contest problem with a modified variance-covariance matrix. Lemma A.2 establishes that h can be
obtained by solving a forecasting problem with a modified variance-covariance matrix. Lemma A.3 simplifies
the variance-covariance matrix of the forecasting problem, and Lemma A.4 further simplifies it yielding a
symmetric variance-covariance matrix. After the lemmas we take the limits of the truncated forecasting
problem as T → ∞.

Lemma A.1. Define

Ω̂ ≡ Ω+K′WK, T̂ ≡ AΩ̂B′
(
BΩ̂B′

)−1

, Ĥ ≡ BΛΩ̂B′
(
BΩ̂B′

)−1

,

and
W ≡

(
Ω−1

µ − λ [(1− α)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]
)−1

.

Then, the equilibrium h solves the following fixed-point problem

h′ = (1− α) T̂ + αh′Ĥ.

Proof. Using the Woodbury matrix identity, we have that(
BΩ̂B′

)−1

= (BΩB′ +BK′WKB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
, (A.6)
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Then, if ĥ is such that ĥ′ = (1− α) T̂ + αĥ′Ĥ, we have that

ĥ′ = (1− α)AΩ̂B′
(
BΩ̂B′

)−1

+ αĥ′BΛΩ̂B′
(
BΩ̂B′

)−1

= (1− α)A (Ω +K′WK)B′
(
BΩ̂B′

)−1

+ αĥ′BΛ (Ω +KWK′)B′
(
BΩ̂B′

)−1

= (1− α)AΩB′
(
BΩ̂B′

)−1

+ (1− α)AK′WKB′
(
BΩ̂B′

)−1

+ αĥ′BΛΩB′
(
BΩ̂B′

)−1

+ αĥ′BΛK′WKB′
(
BΩ̂B′

)−1

.

Using equation (A.6), it follows that

ĥ′ = (1− α)AΩB′ (BΩB′)
−1 − (1− α)AΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ (1− α)AK′WKB′ (BΩB′)
−1 − (1− α)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ αĥ′BΛΩB′ (BΩB′)
−1 − αĥ′BΛΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ αĥ′BΛK′WKB′ (BΩB′)
−1 − αĥ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (1− α)AΩB′ (BΩB′)
−1︸ ︷︷ ︸

(1−α)T

+αĥ′BΛΩB′ (BΩB′)
−1︸ ︷︷ ︸

αĥ′H

− (1− α)AΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
(1−α)TBK′SKB′(BΩB′)−1

−αĥ′BΛΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
αĥ′HBK′SKB′(BΩB′)−1

+ (1− α)AK′WKB′ (BΩB′)
−1 − (1− α)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ αĥ′BΛK′WKB′ (BΩB′)
−1 − αĥ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
.

Further, notice that the terms in the second-to-last line can be rewritten as

(1− α)AK′WKB′ (BΩB′)
−1 − (1− α)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (1− α)AK′W
(
KB′ (BΩB′)

−1
BK′ +W−1

)(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

− (1− α)AK′WKB′ (BΩB′)
−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (1− α)AK′SKB′ (BΩB′)
−1
,

and, similarly, the terms in the last line can be rewritten as

αĥ′BΛK′WKB′ (BΩB′)
−1 − αĥ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= αĥ′BΛK′SKB′ (BΩB′)
−1
.

Therefore, we have that

ĥ′ = (1− α)T + αĥ′H+
[
(1− α) (A− TB) + αĥ′ (BΛ−HB)

]
K′SKB′ (BΩB′)

−1
,

which is equivalent to the expression for h in equation (A.4).
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Lemma A.2. Define

ΩΓ ≡ ΓΩ̂, with Γ ≡

[
Iu 0u,m−u

0m−u,u
Im−u

1−α

]
.

Then, the equilibrium h satisfies

h′ = AΩΓB
′ (BΩΓB

′)
−1
.

Proof. Follows directly from Lemma A.1 and Theorem 1 in Huo and Pedroni (2020).

Lemma A.3. Define

∆ ≡ ΓΩ + ŵτ−1
µ K′Ω̃µK, and Ω̃µ ≡

(
Ω−1

µ − λγKA′AK′)−1
,

with the scalar ŵ given by
ŵ ≡ τµ

1− λ(1− α) (A− h′B)K′Ω̃µK (A′ −B′h)
.

Then, the equilibrium h satisfies
h′ = A∆B′ (B∆B′)

−1
.

Proof. It follows from Lemma A.2 that
(A− h′B)ΩΓB

′ = 0,

and from the definition of ΩΓ and Ω̃µ we have that

ΩΓ = ΓΩ+K′
(
Ω̃−1

µ − λ(1− α)K (A′ −B′h) (A− h′B)K′
)−1

K.

It is then sufficient to show that

(A− h′B)
(
ΓΩ + ŵτ−1

µ K′Ω̃µK
)
= (A− h′B)

(
ΓΩ +K′

(
Ω̃−1

µ − λ (1− α)K (A′ −B′h) (A− h′B)K′
)−1

K
)
,

or, equivalently,

ŵτ−1
µ (A− h′B)K′Ω̃µK =(A− h′B)K′

(
Ω̃−1

µ − λ (1− α)K (A′ −B′h) (A− h′B)K′
)−1

K

=(A− h′B)K′
(
Iu − λ (1− α) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

Ω̃µK.

Thus, it is sufficient to establish that

ŵτ−1
µ (A− h′B)K′ =(A− h′B)K′

(
Iu − λ (1− α) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

,

or

ŵτ−1
µ (A− h′B)K′

(
Iu − λ (1− α) Ω̃µK (A′ −B′h) (A− h′B)K′

)
=(A− h′B)K′,
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which can be rewritten as

ŵτ−1
µ

(
1− λ (1− α) (A− h′B)K′Ω̃µK (A′ −B′h)

)
(A− h′B)K′ =(A− h′B)K′.

The definition of ŵ then yields the result.

Lemma A.4. Define
∆̄ ≡ ΓΩ + ŵτ−1

µ K′ΩµK,

with the scalar ŵ given by

ŵ =
τµ

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

.

Also, let the scalar r̂ be given by

r̂ ≡ ŵ

1 + ŵ

(
λγ

1− λγAK′ΩµKA′

)
(A− h′B)K′ΩµKA′.

Then, the equilibrium h satisfies
h′ = (1 + r̂)A∆̄B′ (B∆̄B′)−1

.

Proof. From the definition of Ω̃µ and ∆ in Lemma A.3, we have that

Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
= Ωµ +

λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′ ,

and

∆ ≡ ΓΩ + ŵτ−1
µ K′Ω̃µK = ∆̄ + ŵτ−1

µ K′
(
λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′

)
K = ∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K,

with s ≡ λγτ−1
µ /(1− λγAK′ΩµKA′). Hence, it follows from the result in Lemma A.3 that

h′ = A
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′ [B (∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′]−1

,

and, therefore,

h′
[
B
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′] = A

(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′.

Rearranging, we get

h′B∆̄B′ + sŵh′BK′ (ΩµKA′AK′Ωµ)KB′ = A∆̄B′ + sŵAK′ (ΩµKA′AK′Ωµ)KB′,
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and right-multiplying both sides by
(
B∆̄B′)−1 yields

h′ = A∆̄B′ (B∆̄B′)−1
+ sŵ (A− h′B)K′ΩµKA′AK′ΩµKB′ (B∆̄B′)−1

= A∆̄B′ (B∆̄B′)−1
+ (1 + ŵ)r̂τ−1

µ AK′ΩµKB′ (B∆̄B′)−1
.

Then, from the definition of ∆̄ and using the fact that Ωµ = τµKΩK′ and AΓΩ = τ−1
µ AK′ΩµK, it follows that

A∆̄ = A
(
ΓΩ + ŵτ−1

µ K′ΩµK
)
= (1 + ŵ) τ−1

µ AK′ΩµK.

Plugging this back into the equation for h′ we obtain the desired result,

h′ = (1 + r̂)A∆̄B′ (B∆̄B′)−1
.

Parts 1 and 2 of Proposition 3.3. Given the result in Lemma A.4, we are left with taking the limit as
T → ∞ of the truncated problem. In particular, we have that

lim
T→∞

A∆̄B′ (B∆̄B′)−1
= p (L;w,α) , lim

T→∞
AK′ΩηKA′ = V(ξt),

lim
T→∞

(A− h′B)K′ΩηK(A′ −Bh′) = V(ξt −Kt), lim
T→∞

(A− h′B)K′ΩηKA′ = COV (ξt −Kt, ξt) ,

lim
T→∞

(A− h′B)K′ΩηKA′

AK′ΩηKA′ = 1− S.

Let w ≡ limT→∞ ŵ, and r ≡ limT→∞ r̂. Then, we can show that

r = lim
T→∞

ŵ

1 + ŵ

λγτµAK′ΩηKA′

1− λγτµAK′ΩηKA′
(A− h′B)K′ΩηKA′

AK′ΩηKA′

=
w

1 + w

λγτµV (ξt)

1− λγτµV (ξt)
(1− S) , (A.7)

and

w = lim
T→∞

τµ

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

= lim
T→∞

τµ

1− λ (1− α) τµ
(
(A− h′B)K′ΩηK (A′ −B′h) + r̂ 1+ŵ

ŵ AK′ΩηK (A′ −B′h)
)

=
τµ

1− λ (1− α) τµ
(
V (ξt −Kt) + r 1+w

w (1− S)V (ξt)
) .

Solving for w, we obtain

w =
τµ

1− λ (1− α) τµ

(
V (ξt −Kt) +

λγτµV(ξt)2(1−S)2

1−λγτµV(ξt)

) . (A.8)
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Lemma A.5 below establishes that w ≥ τµ and r ≥ 0, which completes the proof of parts 1 and 2 of Proposition
3.3.

Lemma A.5. If w and r satisfy equations (A.7) and (A.8), then w ≥ τµ and r ≥ 0.

Proof. The ex-ante objective of an agent i must obtain finite values under an equilibrium strategy ki =

h′Bνi + h0. The ex-ante objective is given by

V = − 1

λ
ln

(∫
µ

exp (−λEµ [u (−ki,K, θ)]) p (µ) dµ
)

= constant − 1

λ
ln

(∫
µ

exp

(
−1

2
µ′S̄µ+ µ′π̄′ + π̄µ

)
dµ

)
,

with the matrix S̄ and the vector π̄ given by

S̄ ≡ Ω−1
µ − λ (1− α)K (A′ −B′h) (A− h′B)K′ − λγKA′AK′,

π̄ ≡ − λ
1

2
(1− α)h0 (A− h′B)K′ − λ

1

2
χAK′,

where we used the fact that Eµ [u (ki,K, θ)] is given by equation (A.3) and

p(µ) = (2π)
−u/2

det (Ωµ)
−1/2

exp

(
−1

2
µ′Ω−1

µ µ

)
.

Thus, a necessary condition for V to be finite in equilibrium is for S̄ to be positive definite; otherwise, the
integral would become explosive.36 Since

Ω̃−1
µ = Ω−1

µ − λγKA′AK′,

it must be that

Ω̃−1
µ − λ (1− α)K (A′ −B′h) (A− h′B)K′ is positive definite.

Defining the vector 𝟋 ≡ (A− h′B)K′Ω̃µ, it follows that

0 ≤ 𝟋
(
Ω̃−1

µ − 2λ (1− α)K (A′ −B′h) (A− h′B)K′
)
𝟋′

= (A− h′B)K′Ω̃µK (A′ −B′h)
(
1− λ (1− α) (A− h′B)K′Ω̃µK (A′ −B′h)

)
.

36 The same argument applies to how Assumption 2 ensures the problem is well defined. Specifically, a well-defined
problem requires the choice set to be non-empty, which is equivalent to requiring S̄ to be positive definite for at least
one h. The necessary and sufficient condition for the existence of an h that makes S̄ positive definite is that Ω̃µ is
positive definite. Notice that Ω̃µ = Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′ . It is then straightforward to see that 1 − λγAK′ΩµKA′ > 0

is the sufficient condition to ensure that Ω̃µ is positive definite. Taking the limit as T → ∞, this is equivalent to
Assumption 2.
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Let x ≡ (A− h′B)K′Ω̃µK (A′ −B′h), then we have that

x(1− λ(1− α)x) ≥ 0 or x ≥ λ(1− α)x2 ≥ 0.

Hence, we have that x ≥ 0, and 1− λ(1− α)x ≥ 0, which implies that

ŵ =
τµ

1− λ(1− α)x
≥ τµ,

and, since w = limT→∞ ŵ, it follows that w ≥ τµ.

Next, for a contradiction, suppose that r < 0. Then, it follows from equation (A.7) and Assumption 2 that
COV (ξt −Kt, ξt) < 0. Further, we have that

COV (ξt −Kt, ξt) = V (ξt)− (1 + r)COV
(
K̂t, ξt

)
,

where K̂t ≡ Kt/ (1 + r) is the average optimal forecast of the fundamental ξt under the (w,α)-modified signal
process (net of the bias B, which is uncorrelated with ξt),37 so that it must be that

0 ≤ COV
(
K̂t, ξt

)
≤ V (ξt) .

Hence, COV (ξt −Kt, ξt) < 0 implies r > 0 and we have a contradiction. Therefore, r ≥ 0.

Part 3 of Proposition 3.3. Next, we switch focus to the level of the B ≡ limT→∞ h0. From equation (A.5)
and the definition of π, we have that

(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S [−λ (1− α)h0K (A′ −B′h) + λχKA′] .

It is straightforward to see there exists a unique h0 that satisfies this equation. We postulate that there exists
µ̃ such that

(1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,

so that solving for µ̃ pins down the unique h0. To proceed, first replace the guess for h0 on the RHS of equation
(A.5),

RHS ≡ [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S [−λ (1− α)h0K (A′ −B′h) + λχKA′]

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

× {−λK (A′ −B′h) [(1− α) (A− h′B) + αh′B (Λ− Im)]K′µ̃+ λχKA′}

37More precisely, notice that K̂t = p(L;w,α)
∫
xit − B/(1 + r), and that it follows from Definition 3.2 that

∫
x̃it =

√
1 + wτµ

∫
xit and ξ̃t =

√
1 + wτµ ξt. Therefore, K̂t =

∫
Ẽit[ξt]− B/(1 + r) and COV

(
K̂t, ξt

)
= COV

(∫
Ẽit[ξt], ξt

)
.
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Next, for the LHS of the equation, we have that

LHS ≡ (1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,

and, substituting the last h using equation (A.4), it follows that

LHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]
[
Im −K′SKB′ (BΩB′)

−1
B
]
K′µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S
[
S−1 −KB′ (BΩB′)

−1
BK′

]
µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{
Ω−1

µ − λ [(1− α)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]
}
µ̃,

where the last equality uses the definition of S. Putting these results together, we have that

LHS − RHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
[
Ω−1

µ µ̃+ αλK (A′ −B′h)h′B (Λ− Im)K′µ̃− λγKA′AK′µ̃− λχKA′] .
Since αλK (A′ −B′h)h′B (Λ− Im)K′ = 0, a sufficient condition for LHS − RHS = 0 is

Ω−1
µ µ̃− λγKA′AK′µ̃− λχKA′ = 0,

which, using the Sherman-Morrison formula, implies that

µ̃ = χλ
(
Ω−1

µ − λγKA′AK′)−1 KA′ = χλ

(
Iu +

λγΩµKA′AK′

1− λγAK′ΩµKA′

)
ΩµKA′.

Therefore, we have that

h0 = (1− α)
−1

[(1− α)A+ αh′BΛ− h′B]K′µ̃

= (A− h′B)K′µ̃

= (A− h′B)K′χλ

(
Iu +

λγΩµKA′AK′

1− λγAK′ΩµKA′

)
ΩµKA′

= χλτµ (A− h′B)K′ΩηKA′
(
1 +

λγτµAK′ΩηKA′

1− λγτµAK′ΩηKA′

)
.

Taking the limit we get

B = lim
T→∞

h0 = χλτµCOV(ξt −Kt, ξt)

(
1 +

λγτµV(ξt)
1− λγτµV(ξt)

)
= χ

λτµV (ξt)

1− λγτµV (ξt)
(1− S) ,

which completes the proof of part 3 of the proposition.

Proof of Proposition 3.1. Using the equivalence result from Proposition 3.3, establishing existence of an
equilibrium reduces to showing that there exists a (w, r) pair that satisfies equations (A.7) and (A.8).
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We start by using the intermediate value theorem to prove that there exists w ∈ [τµ,∞) that satisfies equation
(A.8). Define

F (w) ≡ w

[
1− λ (1− α) τµ

(
V (ξt −Kt) +

λγτµV (ξt)
2
(1− S)2

1− λγτµV (ξt)

)]
− τµ,

such that F (w) = 0 implies equation (A.8). Next, notice that as w → ∞, private information becomes
infinitely precise and, therefore, p (L;w,α) → a(L), or Kt → ξt. It follows that S → 1 and V (ξt −Kt) → 0,
so that limw→∞ F (w) = ∞ and there must exist some finite w̄ ≥ τµ large enough such that F (w̄) > 0. Next,
notice that when w = τµ,

F (τµ) = −λ (1− α) τ2µ

(
V (ξt −Kt) +

λγτµV (ξt)
2
(1− S)2

1− λγτµV (ξt)

)
< 0.

Thus, since F (·) is continuous, F (τµ) < 0, and F (w̄) > 0, there must exist some finite w ∈ [τµ, w̄] such that
F (w) = 0.

Further, from the definition of S we have that (see footnote 37)

1− S =
COV (ξt −Kt, ξt)

V (ξt)
⇒ 1− S = 1− (1 + r)

COV(K̂t, ξt)

V (ξt)
.

Therefore, equation (A.7) becomes

r =
w

1 + w

λγτµV (ξt)

1− λγτµV (ξt)

(
1− (1 + r)

COV(K̂t, ξt)

V (ξt)

)
.

Since COV(K̂t, ξt) does not depend on r, the existence of w directly implies the existence of r.

Proof of Proposition 3.5. According to equation (3.17), α affects the bias, B, only through 1 − S. It is,
then, sufficient to prove that the sensitivity, S, is decreasing in α. Further, since γ = 0 implies r = 0, α affects
S only through the endogenous scalar w. To facilitate the proof, define an alternative signal process such that

ξt = a(L)ηt, with ηt ∼ N (0, σ2
η), (A.9)

x̂it = m(L)ηt + n(L)ϵ̂it, with ϵ̂it ∼ N (0, (1− α)−1(1 + w)−1Σ), (A.10)

and let the corresponding optimal Bayesian forecast be given by

Êit[ξt] = p̂(L;w,α)x̂it.

It is straightforward to show that this signal process is equivalent to the (w,α)-modified signal process for
Definition 3.2, that is

p̂(L;w,α) = p(L;w,α).

For the current proof, this signal process is more helpful. Notice that S is affected by α only through p(L;w,α),
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since it is defined on the basis of the objective signal process.

In what follows, we first show that

lim
α→1−

dCOV (ξt −Kt, ξt)

dα
> 0.

We then prove, by contradiction, that there does not exist α ∈ [0, 1) such that

dCOV (ξt −Kt, ξt)

dα
< 0.

Then, the result follows by continuity of COV (ξt −Kt, ξt) with respect to α.

Step 1: limα→1−
dCOV(ξt−Kt,ξt)

dα > 0:

It follows from equation (3.15) that limα→1− w = τµ. So, as α→ 1−, the signals x̂it become useless and, as a
result,

COV (Kt, ξt) = V (Kt) = 0.

Further, since w ≥ τµ, we have that

lim
α→1−

dw

dα
≤ 0 ⇒ lim

α→1−

d (1− α) (1 + w)

dα
< 0.

Therefore, at the limit of α→ 1−, an increase in α is akin to an increase in the variance of every idiosyncratic
noise, which implies that (see Lemma D.2 in the Online Appendix D of Huo and Pedroni (2020)),

lim
α→1−

dCOV (ξt −Kt, ξt)

dα
> 0.

Step 2: dCOV(ξt−Kt,ξt)
dα > 0 for all α ∈ [0, 1):

Suppose the there exists α ∈ [0, 1) such that dCOV(ξt−Kt,ξt)
dα < 0. Then, by the intermediate value theorem

and continuity of dCOV(ξt−Kt,ξt)
dα , there must exist some α† such that

dCOV (ξt −Kt, ξt)

dα

∣∣∣∣
α=α†

= 0 ⇒ d (1− α) (1 + w)

dα

∣∣∣∣
α=α†

= 0 ⇒ dV (ξt −Kt)

dα

∣∣∣∣
α=α†

= 0,

since, for COV (ξt −Kt, ξt) not to change with α, it must be that the variance of the noise, (1− α) (1 + w), is
unchanged. Since

d (1− α) (1 + w)

dα
= − (1 + wτµ) + (1− α)

dw

dα
,

it follows that
dw

dα

∣∣∣∣
α=α†

> 0.
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However, since COV (ξt −Kt, ξt) and V (ξt −Kt) do not vary with α, it follows from equation (3.15) that

dw

dα

∣∣∣∣
α=α†

= −
λτµ

(
V (ξt −Kt) +

λγτµV(ξt)2(1−S)2

1−λγτµV(ξt)

)
[
1− λ (1− α†) τµ

(
V (ξt −Kt) +

λγτµV(ξt)2(1−S)2

1−λγτµV(ξt)

)]2 < 0.

Thus, we have a contradiction, and we can conclude that

dCOV (ξt −Kt, ξt)

dα
< 0 ⇒ dS

dα
< 0.
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B Extensions

In this section, we consider three extensions to the baseline model setup. The first is the multiple-actions
extension discussed in Section 3.5; here we simply provide a proof of the results presented there. The second
extension allows for a more general utility specification, which covers economies with different forms of ineffi-
ciencies. The third extension is to the information structure, allowing the fundamental to depend on multiple
aggregate shocks.

B.1 Multiple actions

In this section, we extend the baseline setup to allow for multiple actions instead of just a single one. Each
agent i takes J actions, so that kit ∈ RJ . In what follows, we first demonstrate that the utility specification
with multiple actions introduced in Section 3.5, equation (3.18), represents an efficient economy under both
complete and incomplete information, provided there is no concern for ambiguity. We then proceed to present
the proof of Proposition 3.6, which characterizes the equilibrium when there is ambiguity and ambiguity
aversion under this multiple actions setup.

B.1.1 An Efficient Economy

Consider the following extension to multiple actions of the generic quadratic utility specification from Angeletos
and Pavan (2007):

u (kit,Kt,Σt, ξt) =
1

2
k′itUkkkit +

1

2
K ′

tUKKKt +
1

2
ξ′tUξξξt +

1

2
Σ′

tUΣΣΣt + ξ′tU
′
kξkit +K ′

tU
′
kKkit + ξ′tU

′
KξKt

+ Ukkit + UKKt + Uξξt + const.,

where Kt and Σt denote respectively the cross-sectional mean and dispersion of the J actions,

Kt ≡
∫
i

kit di, and Σt ≡

(√∫
i

(k1,it −K1,t)
2
di, · · · ,

√∫
i

(kj,it −Kj,t)
2
di, · · · ,

√∫
i

(kJ,it −KJ,t)
2
di

)
.

The jth elements of kit and Kt are represented by kj,it and Kj,t, respectively. We assume that UΣΣ is diagonal,
and that the information structure is the same as in the single-action setup.

Equilibrium. Without any concern for ambiguity, we now define and characterize an equilibrium for this
model.

Definition B.1. In the absence of ambiguity, an equilibrium is a strategy k (xti) such that

k
(
xti
)
= argmax kE

[
u
(
k,K

(
ηt
)
,Σ
(
ηt
)
, ξ
(
ηt
))

| xti
]
,

where K (ηt) ≡
∫
i
k (xti) di denotes the equilibrium aggregate action, and

Σ
(
ηt
)
≡
(
σ1
(
ηt
)
, · · · , σj

(
ηt
)
, · · · , σJ

(
ηt
))′

, with σj
(
ηt
)
≡

√∫
i

(kj,i (xti)−Kj (ηt))
2
di,
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denotes the equilibrium cross-sectional dispersion of actions.

Proposition B.1. In the absence of ambiguity, a strategy k (xti) is an equilibrium under incomplete informa-
tion if and only if

k
(
xti
)
= (I−Θ)E

[
κ (ξt) | xti

]
+ΘE

[
K
(
ηt
)
| xti
]
,

where the equilibrium degree of coordination is captured by the J × J matrix

Θ ≡ −U−1
kk UkK ,

and κ (ξt) denotes the equilibrium allocation under complete information, given by

κ (ξt) ≡ − (Ukk + UkK)
−1
Ukξ︸ ︷︷ ︸

κ

ξt − (Ukk + UkK)
−1
U ′
k︸ ︷︷ ︸

κ0

.

Proof. We first characterize the complete-information benchmark. Let Iit be the information set of agent i
in period t. Under complete information, we have that ξt ∈ Iit. That is, all agents have perfect information
about both the fundamental ξt and, consequently, about the aggregate action Kt. The agent’s first-order
condition is then given by

∂u (kit,Kt,Σt, ξt)

∂kit
= k′itUkk + ξ′tU

′
kξ +K ′

tU
′
kK + Uk = 0.

Using the fact that kit = Kt, the equilibrium strategy under complete information is such that

kit = κ (ξt) ≡ − (Ukk + UkK)
−1
Ukξ︸ ︷︷ ︸

κ

ξt − (Ukk + UkK)
−1
U ′
k︸ ︷︷ ︸

κ0

,

where both κ and κ0 are J × 1 vectors.

When information is incomplete, the agent’s first-order condition becomes

−Ukk kit = Ukξ E
[
ξt | xti

]
+ UkK E

[
Kt | xti

]
+ U ′

k.

Multiplying − (Ukk + UkK)
−1 to both sides of the equation implies

(Ukk + UkK)
−1
Ukk kit = − (Ukk + UkK)

−1
Ukξ E

[
ξt | xti

]
−(Ukk + UkK)

−1
UkK E

[
Kt | xti

]
−(Ukk + UkK)

−1
U ′
k,

and it follows that
kit = U−1

kk (Ukk + UkK) E
[
κ (ξt) | xti

]
− U−1

kk UkK E
[
Kt | xti

]
.

which completes the proof.

Efficient allocation. Abstracting from ambiguity concerns, an efficient allocation is the strategy k (xti) that
maximizes ex-ante utility, subject only to the constraint that the private information of any agent cannot be
transferred to any other agent.
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Definition B.2. In the absence of ambiguity, an efficient allocation is a strategy k (xti) that maximizes ex-ante
expected utility,

E
[
u
(
k,K

(
ηt
)
,Σ
(
ηt
)
, ξ
(
ηt
))]

.

Proposition B.2. In the absence of ambiguity, a strategy k (xti) is efficient under incomplete information if
and only if

k
(
xti
)
= (I−Θ∗)

∫
ηt

κ∗(ξ
(
ηt
)
)dP

(
ηt | xti

)
+Θ∗

∫
ηt

K
(
ηt
)
dP
(
ηt | xti

)
,

where P (ηt | xti) denotes the cumulative distribution function of ηt conditional on xti, the efficient degree of
coordination is captured by the J × J matrix

Θ∗ = − (Ukk + UΣΣ)
−1

(UKK + UkK + U ′
kK − UΣΣ) ,

and κ∗(ξt) denotes the efficient allocation under complete information, given by

κ∗(ξt) ≡ − (Ukk + UkK + U ′
kK + UKK)

−1
(Ukξ + UKξ)︸ ︷︷ ︸

κ∗

ξt − (Ukk + UkK + U ′
kK + UKK)

−1
(Uk + UK)

′︸ ︷︷ ︸
κ∗
0

.

Proof. We first characterize the first-best allocation, that is, the efficient allocation under complete informa-
tion. Let Iit be the information set of agent i in period t. Under complete information, we have that ξt ∈ Iit.
It is, then, straightforward to show that the first-best allocation features kit = Kt, which implies that Σt = 0.
It follows that the efficient level of Kt must maximize

1

2
K ′

t (Ukk + UkK + U ′
kK + UKK)Kt +

1

2
ξ′tUξξξt + ξ′t (Ukξ + UKξ)

′
Kt + (Uk + UK)Kt + Uθξt + const.,

which implies the following first-order condition,

K ′
t (Ukk + UkK + U ′

kK + UKK) + ξ′t (Ukξ + UKξ)
′
+ (Uk + UK) = 0.

It follows that the efficient allocation satisfies

kit = Kt = − (Ukk + UkK + U ′
kK + UKK)

−1
(Ukξ + UKξ)︸ ︷︷ ︸

κ∗

ξt − (Ukk + UkK + U ′
kK + UKK)

−1
(Uk + UK)

′︸ ︷︷ ︸
κ∗
0

,

where both κ∗ and κ∗0 are J × 1 vectors.

To characterize the efficient allocation under incomplete information, define the Lagrangian of the problem in
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Definition B.2 by

Λ =

∫
ηt

∫
xt
i

u
(
k
(
xti
)
,K
(
ηt
)
,Σ
(
ηt
)
, ξ
(
ηt
))

dP
(
xti | ηt

)
dP
(
ηt
)

+

∫
ηt

ι
(
ηt
) [
K
(
ηt
)
−
∫
xt
i

k
(
xti
)
dP
(
xti | ηt

)]
dP
(
ηt
)

+

∫
ηt

J∑
j=1

φj

(
ηt
) [
σ2
j

(
ηt
)
−
∫
xt
i

(
kj,i

(
xti
)
−Kj

(
ηt
))2

P
(
xti | ηt

)
dxti

]
dP
(
ηt
)
,

where ι (ηt) and φj (η
t) denote the multipliers on the definitions of K (ηt) and σj (η

t), respectively. Further,
P (xti | ηt) denotes the CDF of xti conditional on ηt, and and P (ηt) denotes the unconditional CDF of ηt.

To ease notation, denote φ (ηt) ≡ diag (φ1 (η
t) , · · · , φj (η

t) , · · · , φJ (ηt)). Then, the first-order conditions can
be written as∫

xt
i

(
∂u (·)
∂K

+ ι
(
ηt
)
+ 2φ

(
ηt
) (
k
(
xti
)
−K

(
ηt
)))

dP
(
xti | ηt

)
= 0, for almost all ηt, (B.1)

∫
ηt

(
∂u (·)
∂k

− ι
(
ηt
)
− 2φ

(
ηt
) (
k
(
xti
)
−K

(
ηt
)))

dP
(
ηt | xti

)
= 0, for almost all xti, (B.2)

∫
xt
i

(
∂u (·)
∂Σ

)
dP
(
xti | ηt

)
+ 2φ

(
ηt
)
Σ
(
ηt
)
= 0, for almost all ηt. (B.3)

Rearranging equations (B.1) and (B.3), we obtain∫
xt
i

∂u (·)
∂K

dP
(
xti | ηt

)
+ ι
(
ηt
)
= 0, and φ

(
ηt
)
= −1

2
UΣΣ, for almost all ηt.

Further, since
∂u (·)
∂K

= UKKK
(
ηt
)
+ U ′

kK k
(
xti
)
+ UKξ ξ

(
ηt
)
+ UK ,

it follows that
ι
(
ηt
)
= − (UKK + U ′

kK)K
(
ηt
)
− UKξ ξ

(
ηt
)
− UK .

Using these two expressions to replace ι (ηt) and φ (ηt) in equation (B.2), and using the fact that

∂u (·)
∂k

= Ukkk
(
xti
)
+ UkKK

(
ηt
)
+ Ukξξ

(
ηt
)
+ Uk,

yields

k
(
xti
)
= (Ukk + UΣΣ)

−1
(Ukk + UkK + U ′

kK + UKK)

∫
ηt

κ∗(ξ
(
ηt
)
)dP

(
ηt | xti

)
− (Ukk + UΣΣ)

−1
(UKK + UkK + U ′

kK − UΣΣ)

∫
ηt

K
(
ηt
)
dP
(
ηt | xti

)
,

which completes the proof.
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By comparing Propositions B.1 and B.2, we arrive at the following corollary.

Corollary B.1. An economy is efficient if and only if

κ (ξt) = κ∗(ξt), and Θ = Θ∗.

Next, notice that the utility specification in equation (3.18), used in Section 3.5,

u(kit,Kt, ξt) =
1

2
(kit − κξt)

′
Ψk (kit − κξt) +

1

2
(kit −Kt)

′
ΨK (kit −Kt) + χξt −

1

2
γξ2t ,

implies that
UK = 0, UΣΣ = UKξ = 0, and UkK = UkK′ = UKK .

These constraints imply the conditions from Corollary B.1, which then leads to following result.

Claim 1. The economy with utility given by equation (3.18) is efficient under both complete and incomplete
information.

We conclude this subsection by two additional remarks:

1. We can normalize Uk = 0, and thus, κ0 = 0 without loss of generality. A nonzero Uk would only add an
exogenous vector of constants to the action strategy under complete or incomplete information. This
same exogenous vector of constants also applies to the equilibrium action strategy with ambiguity. This
vector of constants can be regarded as the deterministic steady state of the economy, which can always
be abstracted away by redefining actions as deviations from the deterministic steady state.

2. We demonstrate that economy with the utility specified as in equation (3.18) is efficient. This statement
can be strengthened in the sense that, as long as UΣΣ = 0, equation (3.18) is the only utility specification
that ensures efficiency under complete and incomplete information.

B.1.2 Equilibrium with Ambiguity

We now proceed to characterize the equilibrium with ambiguity. First notice that the utility specified in
equation (3.18) is equivalent to the generic quadratic utility if we set

Ukk = Ψk +ΨK , and UKK = ΨK .

From this point forward, we use these conditions to switch to the notation used in the paper, with Ψk and
ΨK .

Analogously to Proposition 3.2, it can be shown that the optimal strategies for the vector of J actions of all
agents are such that

kit = (I−Θ)Fit [κξt] + ΘFit [Kt] , (B.4)
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where Fit [·] represents agent i’s subjective expectation operator, that is,

Fit [·] ≡
∫
µt

Eµt

[ · | xti] p̂
(
µt | xti

)
dµt, with p̂

(
µt | xti

)
∝ ϕ′

(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt | xti

)
.

Moreover, the coordination matrix, Θ, is such that

Θ = U−1
kk UKK = (Ψk +ΨK)

−1
ΨK .

B.1.3 Proof of Proposition 3.6

Next, as in the single action case, we consider a truncated version of the problem using exactly the same
notation as in the proof of Proposition 3.3. We identify a specific form for the equilibrium optimal strategies,
which we then use to prove the main equivalence result, Proposition 3.6.

Define higher-order subjective expectations recursively as follows:

F̄n [X] ≡

X, if n = 0;∫
i
Fi

[
F̄n−1 [X]

]
di, if n ≥ 1.

By iteratively eliminating Fit [K] in the best response (B.4), we obtain

ki =

∞∑
m=0

Θm (I −Θ)κ Fi

[
F̄m [θ]

]
.

Notice that, as long as subjective expectations are Gaussian, agent i’s subjective expectations about any order
must be linear in signals, that is,

Fi

[
F̄m [θ]

]
= h̃′m xi + q̃m,

where the J ×n matrix h̃′m and J × 1 vector q̃m represent the sensitivity and bias of the mth-order subjective
expectation. Further, let the eigenvalue decomposition of Θ be given by

Θ ≡
J∑

j=1

αjQ
−1eje

′
j Q,
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where ej denotes the j-th column of a J × J identity matrix. It follows that

ki =

∞∑
m=0

 J∑
j=1

αjQ
−1eje

′
j Q

m J∑
j=1

(1− αj)Q
−1eje

′
j Q

κ
(
h̃′m xi + q̃m

)

=

∞∑
m=0

 J∑
j=1

αm
j Q

−1eje
′
j Q

 J∑
j=1

(1− αj)Q
−1eje

′
j Q

κ
(
h̃′m xi + q̃m

)

=

∞∑
m=0

J∑
j=1

(1− αj)α
m
j Q

−1eje
′
j Qκ

(
h̃′m xi + q̃m

)

=

J∑
j=1

Q−1eje
′
j Qκ

(
(1− αj)

∞∑
m=0

αm
j h̃

′
m xi + (1− αj)

∞∑
m=0

αm
j q̃m

)

=

J∑
j=1

Q−1eje
′
j Qκ

(
ĥ′j xi + q̂j

)
,

where ĥj and q̂j are defined as

ĥj ≡ (1− αj)

∞∑
m=0

αm
j h̃

′
m, and q̂j ≡ (1− αj)

∞∑
m=0

αm
j q̃m.

Interpret κ
(
ĥ′j xi + q̂j

)
, for all j, as a set of forecasting rules for the equilibrium allocation under complete

information, κθ. Then, the derived expression implies that the optimal strategy for each of the J actions is a
linear combination of these forecasting rules. This linear relationship can be “orthogonalized” by transforming
the actions ki and the complete information allocation κθ using the matrix Q. Specifically, let

k̂i ≡ Qki, and κ̂ ≡ Qκ.

It follows that

k̂i =

J∑
j=1

eje
′
j κ̂
(
ĥ′jxi + q̂j

)
,

so that the j-th transformed action, the j-th row of k̂i, is equal to e′j κ̂
(
ĥ′j xi + q̂j

)
.

By defining

H ≡
[
e′1κ̂ĥ

′
1 e′2κ̂ĥ

′
2 . . . e′J κ̂ĥ

′
J

]
, and Q ≡

[
e′1κ̂q̂1 e′2κ̂q̂2 . . . e′J κ̂q̂J

]′
,

the expression for k̂i can be compactly written as

k̂i = H′Bνi +Q.
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Similarly, the Q-transformed version of the complete information solution can be written as

κ̂ (θ) = κ̂Aνi =

J∑
j=1

eje
′
j κ̂Aνi = Aνi, with A ≡

[
e′1κ̂A e′2κ̂A . . . e′J κ̂A

]′
= κ̂⊗A.

Further, the utility function can also be transformed in a similar way,

ui =
1

2

(
k̂i − κ̂ (θ)

)′
Ψ̂k

(
k̂i − κ̂ (θ)

)
+

1

2

(
k̂i − K̂

)′
Ψ̂K

(
k̂i − K̂

)
+ χθ − 1

2
γθ2 + const.,

with
Ψ̂k ≡

(
Q−1

)′
ΨkQ

−1, and Ψ̂K ≡
(
Q−1

)′
ΨKQ

−1.

It follows that

Eµ [ui] =
1

2
µ′K (H′B −A)

′
Ψ̂k (H′B −A)K′µ− 1

2
γµ′KA′AK′µ+

1

2
µ′K (H′B −A)

′
Ψ̂KQ+

1

2
Q′Ψ̂k (H′B −A)K′µ+

1

2
χAK′µ+

1

2
χµ′KA′.

Thus, the distorted subjective belief must satisfy

p̂ (µ | xi) ∝ exp

(
−1

2
µ′S−1µ+

1

2
µ′S−1 (Mxi +Π) +

1

2
(Mxi +Π)

′
S−1µ

)
,

with matrices S, M , and Π given by

S ≡
(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ + λ
(
K (H′B −A)

′
Ψ̂k (H′B −A)K′ − γKA′AK′

))−1

.

M ≡ SK (BΩB′)
−1
, and Π ≡ S

(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
.

From agent i’s first order condition, equation (B.4), we have that

k̂i =

I−
J∑

j=1

αjeje
′
j

AFi [νi] +

 J∑
j=1

αjeje
′
j

Fi

[
K̂
]
,

and, therefore,

H′Bνi +Q =

I−
J∑

j=1

αjeje
′
j

AFi [νi] +

 J∑
j=1

αjeje
′
j

 (H′BΛFi [νi] +Q) .
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Moreover, the distorted subjective expectations satisfy

Fi [νi] =

∫
µ

Eµ [νi|xi] p̂ (µ|xi) dµ

=

∫
µ

(Eµ [νi − µ|xi] + µ) p̂ (µ|xi) dµ

=

∫
µ

(
ΩB′ (BΩB′)

−1
(xi − µ) + µ

)
p̂ (µ|xi) dµ

= ΩB′ (BΩB′)
−1
xi +

(
I− ΩB′ (BΩB′)

−1
B
)
K′
∫
µ

µp̂i (µ) dµ

= ΩB′ (BΩB′)
−1
xi +

(
I− ΩB′ (BΩB′)

−1
B
)
K′SKB′ (BΩB′)

−1
xi

+
(
I− ΩB′ (BΩB′)

−1
B
)
K′S

(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
.

Matching coefficients then implies that

H′ = (I− Φ)T + ΦH′H+ [(I− Φ) (A− TB) + ΦH′ (BΛ−HB)]K′SKB′ (BΩB′)
−1
, (B.5)

and

(I− Φ)Q = [(I− Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
, (B.6)

where T, H, and Φ are given by

T ≡ AΩB′ (BΩB′)
−1
, H ≡ BΛΩB′ (BΩB′)

−1
, and Φ ≡

J∑
j=1

αjeje
′
j .

In what follows, we first focus on equation (B.5). Through a sequence of lemmas, we show that this fixed-
point problem for H can be recast as the linear combination of pure forecasting problems. We then proceed
to characterize Q using equation (B.6).

Lemma B.1. Define

Ω̂ ≡ Ω+K′WK, T̂ ≡ AΩ̂B′
(
BΩ̂B′

)−1

, Ĥ ≡ BΛΩ̂B′
(
BΩ̂B′

)−1

,

and
W ≡

(
Ω−1

µ + λ
(
K (H′B −A)

′
Ψ̂k (H′B −A)K′ − γKA′AK′

))−1

.

Then, the equilibrium H solves the following fixed-point problem

H′ = (I− Φ) T̂ + ΦH′Ĥ.
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Proof. Using the Woodbury matrix identity, we have that(
BΩ̂B′

)−1

= (BΩB′ +BK′WKB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (BΩB′)
−1 − (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
. (B.7)

If some H̃ is such that H̃′ = (I− Φ) T̂ + ΦH̃′Ĥ, then

H̃′ = (I− Φ)AΩ̂B′
(
BΩ̂B′

)−1

+ΦH̃′BΛΩ̂B′
(
BΩ̂B′

)−1

= (I− Φ)A (Ω +K′WK)B′
(
BΩ̂B′

)−1

+ΦH̃′BΛ (Ω +KWK′)B′
(
BΩ̂B′

)−1

= (I− Φ)AΩB′
(
BΩ̂B′

)−1

+ (I− Φ)AK′WKB′
(
BΩ̂B′

)−1

+ΦH̃′BΛΩB′
(
BΩ̂B′

)−1

+ΦH̃′BΛK′WKB′
(
BΩ̂B′

)−1

.

Using equation (B.7), it follows that

H̃′ = (I− Φ)AΩB′ (BΩB′)
−1 − (I− Φ)AΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ (I− Φ)AK′WKB′ (BΩB′)
−1 − (I− Φ)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ΦH̃′BΛΩB′ (BΩB′)
−1 − ΦH̃′BΛΩB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ΦH̃′BΛK′WKB′ (BΩB′)
−1 − ΦH̃′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (I− Φ)AΩB′ (BΩB′)
−1︸ ︷︷ ︸

(I−Φ)T

+ΦH̃′BΛΩB′ (BΩB′)
−1︸ ︷︷ ︸

ΦH̃′H

− (I− Φ)AΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
(I−Φ)TBK′SKB′(BΩB′)−1

−ΦH̃′BΛΩB′ (BΩB′)
−1
BK′SKB′ (BΩB′)

−1︸ ︷︷ ︸
ΦH̃′HBK′SKB′(BΩB′)−1

+ (I− Φ)AK′WKB′ (BΩB′)
−1 − (I− Φ)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

+ΦH̃′BΛK′WKB′ (BΩB′)
−1 − ΦH̃′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1
.

Further, notice that the terms in the second-to-last line can be rewritten as

(I− Φ)AK′WKB′ (BΩB′)
−1 − (I− Φ)AK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= (I− Φ)AK′W
(
KB′ (BΩB′)

−1
BK′ +W−1

)(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

− (I− Φ)AK′WKB′ (BΩB′)
−1
BK′

(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

KB′ (BΩB′)
−1

= (I− Φ)AK′SKB′ (BΩB′)
−1
,
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and, similarly, the terms in the last line can be rewritten as

ΦH̃′BΛK′WKB′ (BΩB′)
−1 − ΦĤ′BΛK′WKB′ (BΩB′)

−1
BK′SKB′ (BΩB′)

−1

= ΦH̃′BΛK′SKB′ (BΩB′)
−1
.

Therefore, we have that

H̃′ = (I− Φ)T + ΦH̃′H+
[
(I− Φ) (A− TB) + ΦH̃′ (BΛ−HB)

]
K′SKB′ (BΩB′)

−1
,

which is equivalent to the expression for H in equation (B.5).

Lemma B.2. For any j ∈ {1, · · · , J}, define

ΩΓj
≡ Γj Ω̂, with Γj ≡

[
Iu 0u,m−u

0m−u,u
Im−u

1−αj

]
.

Then, the equilibrium H satisfies
e′jH′ = e′jAΩΓj

B′ (BΩΓj
B′)−1

.

Proof. It follows from Lemma B.1 that

H′ = (I− Φ)AΩ̂B′
(
BΩ̂B′

)−1

+ΦH′BΛΩ̂B′
(
BΩ̂B′

)−1

.

Right multiplying by BΩ̂B′, we obtain

H′BΩ̂B′ = (I− Φ)AΩ̂B′ +ΦH′BΛΩ̂B′,

or, using Φ =
∑J

j=1 eje
′
jαj ,

J∑
j=1

eje
′
jH′BΩ̂B′ −

J∑
j=1

αjeje
′
jH′BΛΩ̂B′ = (I− Φ)AΩ̂B′,

which can be rewritten as
n∑

j=1

eje
′
jH′B (I− αjΛ) Ω̂B

′ = (I− Φ)AΩ̂B′.

Since (I− αjΛ) = (1− αj)Γj , it follows that

n∑
j=1

(1− αj) eje
′
jH′BΓjΩ̂B

′ = (I− Φ)AΩ̂B′.

Guessing that
e′jH′ = e′jAΩΓjB

′ (BΩΓjB
′)−1

,
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and using AΓj = A, we obtain

n∑
j=1

(1− αj) eje
′
jAΩ̂B′ (BΩΓj

B′)−1
BΩΓj

B′ = (I− Φ)AΩ̂B′,

or
n∑

j=1

(1− αj) eje
′
jAΩ̂B′ = (I− Φ)AΩ̂B′.

The fact that (I− Φ) =
∑J

j=1 (1− αj) eje
′
j concludes the proof.

Lemma B.3. Define

∆j ≡ ΓjΩ+K′Ŵ Ω̃µK, and Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
,

with
Ŵ ≡ Iu − λΩ̃µK

(
A−H′B

)′
Ψ̂kW̄

(
A−H′B

)
K′,

and
W̄ ≡

(
IJ + λ

(
A−H′B

)
K′Ω̃µK

(
A−H′B

)′
Ψ̂k

)−1

.

Then, the equilibrium H satisfies

H′ =

J∑
i=1

eje
′
jA∆jB

′ (B∆jB
′)
−1
.

Proof. It follows from Lemma B.2 that

n∑
j=1

eje
′
j (A−H′B)ΩΓj

B′ = 0.

From the definitions of ΩΓj
and Ω̃µ, we have that

ΩΓj = ΓjΩ+K′
(
Ω̃−1

µ + λK
(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

K.

It is then sufficient to show that

n∑
j=1

eje
′
j (A−H′B)

(
ΓjΩ+K′Ŵ Ω̃µK

)
=

n∑
j=1

eje
′
j (A−H′B)

(
ΓjΩ+K′

(
Ω̃−1

µ + λK
(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

K
)
,

or, equivalently,

(A−H′B)
(
K′Ŵ Ω̃µK

)
= (A−H′B)

(
K′
(
Ω̃−1

µ + λK
(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

K
)
.
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In turn, a sufficient condition for this equation to be satisfied is that

Ŵ =
(
Iu + λΩ̃µK

(
A−H′B

)′
Ψ̂k

(
A−H′B

)
K′
)−1

,

which, using the Woodbury matrix identity, can be rewritten as

Ŵ = Iu − λΩ̃µK
(
A−H′B

)′
Ψ̂kW̄

(
A−H′B

)
K′,

with
W̄ =

(
IJ + λ

(
A−H′B

)
K′Ω̃µK

(
A−H′B

)′
Ψ̂k

)−1

.

Lemma B.4. Denote the eigenvalue decomposition of (IJ − Φ)
(
τ−1
µ IJ + W̄

)
by

(IJ − Φ)
(
τ−1
µ IJ + W̄

)
= P−1

 J∑
j=1

ωjeje
′
j

P .

Define

∆̄j ≡ ΓjΩ+K′
(

ωj

(1− αj)
Ωµ − Ωη

)
K,

and let the scalars r̂j and x̂j be given by

r̂j ≡
λγe′jW̄ (A−H′B)K′ΩµKA′

(1− λγAK′ΩµKA′)κ̂j
, and x̂j ≡

J∑
i=1

Pji

(
1 +

(1− αi) r̂i
ωj

)
κ̂i,

and let X ′ be such that
e′jX ′ ≡ x̂j

(
A∆̄jB

′) (B∆̄jB
′)−1

.

Then, the equilibrium H satisfies
H′ = P−1X ′.

Proof. From Lemma B.3, we have that

e′jH′ = e′jA
(
ΓjΩ+K′Ŵ Ω̃µK

)
B′
(
B
(
ΓjΩ+K′Ŵ Ω̃µK

)
B′
)−1

,

and, therefore,
e′jH′B

(
ΓjΩ+K′Ŵ Ω̃µK

)
B′ = e′jA

(
ΓjΩ+K′Ŵ Ω̃µK

)
B′.

Rearranging, we get
e′jH′BΓjΩB

′ = e′jAΓjΩB
′ + e′j (A−H′B)K′Ŵ Ω̃µKB′.
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Since

(A−H′B)K′Ŵ = (A−H′B)K′ − λ (A−H′B)K′Ω̃µK
(
A−H′B

)′
Ψ̂kW̄

(
A−H′B

)
K′

=
(
IJ − λ (A−H′B)K′Ω̃µK

(
A−H′B

)′
Ψ̂k

)
W̄
(
A−H′B

)
K′

= W̄ (A−H′B)K′,

it follows that
e′jH′BΓjΩB

′ = e′jAΓjΩB
′ + e′jW̄ (A−H′B)K′Ω̃µKB′.

From the definition of Ω̃µ, we have that

Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
= Ωµ + sΩµKA′AK′Ωµ,

with
s ≡ λγ

1− λγAK′ΩµKA′ .

So that

e′jH′BΓjΩB
′ = e′jAΓjΩB

′ + e′jW̄ (A−H′B)K′ (Ωµ + sΩµKA′AK′Ωµ)KB′

= e′jAΓjΩB
′ + e′jW̄ (A−H′B)K′ΩµKB′ + r̂je

′
jAK′ΩµKB′,

where we used the fact that e′j (A−H′B)K′ΩµKA′ and κ̂j ≡ e′j κ̂ are scalars, κ̂jA = e′jA, and

r̂j ≡
s
(
e′jW̄ (A−H′B)K′ΩµKA′)

κ̂j
.

Thus, it follows that

e′jH′BΓjΩB
′ = e′jA (ΓjΩ+ r̂jK′ΩµK)B′ + e′jW̄ (A−H′B)K′ΩµKB′,

which implies

J∑
j=1

eje
′
jH′BΓjΩB

′ =

J∑
j=1

eje
′
jA (ΓjΩ+ r̂jK′ΩµK)B′ + W̄ (A−H′B)K′ΩµKB′,

and, therefore,

J∑
j=1

eje
′
jH′BΓjΩB

′ + W̄H′BK′ΩµKB′ =

J∑
j=1

eje
′
jA (ΓjΩ+ r̂jK′ΩµK)B′ + W̄AK′ΩµKB′.

Next, we use this equation to solve for H. Recall that A = [a′, 0], where a is of dimension u × 1, and let
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B = [B1, B2], with B1 of dimension n× u and B2 of dimension n× (m− u). Then,

J∑
j=1

eje
′
jH′

(
B1ΩηB

′
1 +

1

1− αj
B2ΩεB

′
2

)
+ W̄H′ (B1ΩµB

′
1) =

J∑
j=1

ej κ̂ja
′ (Ωη + r̂jΩµ)B

′
1 + W̄ κ̂a′ΩµB

′
1.

Using the fact that τ−1
µ Ωµ = Ωη, it follows that

(
τ−1
µ IJ + W̄

)
H′ (B1ΩµB

′
1) + (IJ − Φ)

−1 H′ (B2ΩεB
′
2) =

J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 +

(
τ−1
µ IJ + W̄

)
κ̂a′ΩµB

′
1.

Left multiplying by (IJ − Φ), then, implies

(IJ − Φ)
(
τ−1
µ IJ + W̄

)
H′ (B1ΩµB

′
1)+H′ (B2ΩεB

′
2) = (IJ − Φ)

 J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 +

(
τ−1
µ IJ + W̄

)
κ̂a′ΩµB

′
1

 .

Since, by definition,

(IJ − Φ)
(
τ−1
µ IJ + W̄

)
= P−1DP, with D ≡

 J∑
j=1

ωjeje
′
j

 ,

it follows that

P−1DPH′ (B1ΩµB
′
1) +H′ (B2ΩεB

′
2) = (IJ − Φ)

J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 + P−1DPκ̂a′ΩµB

′
1.

Left multiplying by P , then, implies

DPH′ (B1ΩµB
′
1) + PH′ (B2ΩεB

′
2) = P (IJ − Φ)

J∑
j=1

ej κ̂ja
′ (r̂jΩµ)B

′
1 +DPκ̂a′ΩµB

′
1.

Next, define
X ′ ≡ PH′,

so that we can rewrite the equation as

DX ′ (B1ΩµB
′
1) + X ′ (B2ΩεB

′
2) = P

J∑
j=1

ej (1− αj) κ̂ja
′ (r̂jΩµ)B

′
1 +DPκ̂a′ΩµB

′
1.

Next, using the definition of D, we obtain

e′jX ′ (B1ωjΩµB
′
1 +B2ΩεB

′
2) = e′j

(
P

J∑
i=1

ei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 +DPκ̂a′ΩµB

′
1

)
.
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Right multiplying by (B1ωjΩµB
′
1 +B2ΩεB

′
2)

−1, then, yields

e′jX ′ = e′j

(
P

J∑
i=1

ei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 +DPκ̂a′ΩµB

′
1

)
(B1ωjΩµB

′
1 +B2ΩεB

′
2)

−1
.

Notice that

e′j

(
P

J∑
i=1

ei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 +DPκ̂a′ΩµB

′
1

)
=

J∑
i=1

e′jPei (1− αi) κ̂ia
′ (r̂iΩµ)B

′
1 + e′jDPκ̂a

′ΩµB
′
1

=

J∑
i=1

Pji ((1− αi) r̂i + ωj) κ̂ia
′ΩµB

′
1,

so that we can further rewrite the expression as

e′jX ′ =

(
J∑

i=1

Pji

(
(1− αi) r̂i + ωj

ωj

)
κ̂ia

′ωjΩµB
′
1

)
(B1ωjΩµB

′
1 +B2ΩεB

′
2)

−1

=

(
J∑

i=1

Pji

(
(1− αi) r̂i + ωj

ωj

)
κ̂ia

′ ωj

(1− αj)
ΩµB

′
1

)(
B1

ωj

(1− αj)
ΩµB

′
1 +B2

1

(1− αj)
ΩεB

′
2

)−1

.

Finally, using the definition of ∆̄j , we get

e′jX ′ =

J∑
i=1

Pji

(
1 +

(1− αi) r̂i
ωj

)
κ̂i
(
A∆̄jB

′) (B∆̄jB
′)−1

,

and the definition of X ′ implies
H′ = P−1X ′.

Parts 1 and 2 of Proposition 3.6. Given the result in Lemma B.4, we are left with taking the limit, as
T → ∞, of the truncated problem. Define wj ≡ τµωj

1−αj
− 1, then, in particular, we have that

lim
T→∞

A∆̄jB
′ (B∆̄jB

′)−1
= p (L;wj , αj) , lim

T→∞
AK′ΩηKA′ = V(ξt),

lim
T→∞

(
A−H′B

)
K′ΩηK

(
A−H′B

)′
= V(κ̂ξt − K̂t), lim

T→∞
(A−H′B)K′ΩµKA′ = COV

(
κ̂ξt − K̂t, ξt

)
.
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Next, let W ≡ limT→∞ τµW̄ , rj ≡ limT→∞
τµ

1+wj
r̂j , and xj ≡ limT→∞ x̂j , for j ∈ {1, . . . , J}. Then, it follows

that

W = lim
T→∞

(
τ−1
µ IJ + λτ−1

µ

(
A−H′B

)
K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′

)
K
(
A−H′B

)′
Ψ̂k

)−1

= lim
T→∞

(
τ−1
µ IJ + λ

((
A−H′B

)
K′ΩηK

(
A−H′B

)′
+

λγ(A−H′B)K′(ΩηKA′AK′Ωη)K(A−H′B)
′

τ−1
µ −λγAK′ΩηKA′

)
Ψ̂k

)−1

=

τ−1
µ IJ + λ

V
(
κ̂1ξt − K̂t

)
+
λγCOV

(
κ̂ξt − K̂t, ξt

)
COV

(
κ̂ξt − K̂t, ξt

)′
τ−1
µ − λγV (ξt)

 Ψ̂k


−1

W =

(
τ−1
µ IJ + λQ

(
V (κξt −Kt) +

λγCOV (κξt −Kt, ξt)COV (κξt −Kt, ξt)
′

τ−1
µ − λγV (ξt)

)
ΨkQ

−1

)−1

,

and

rj = lim
T→∞

τµ
1 + wj

λγ

1− λγAK′ΩµKA′
e′jτ

−1
µ τµW̄ (A−H′B)K′ΩµKA′

κ̂j

=
τµ

1 + wj

λγ

1− λτµγV (ξt)

e′jWCOV
(
κ̂ξt − K̂t, ξt

)
κ̂j

= γ
λτµ

1− λτµγV (ξt)

e′jWQCOV (κξt −Kt, ξt)

e′jQκj(1 + wj)
,

and

xj = lim
T→∞

J∑
i=1

Pji

(
1 +

(1− αi) r̂i
ωj

)
κ̂i =

J∑
i=1

Pji

(
1 +

(1− αi)

(1− αj)
rj

)
Qκi.

Part 3 of Proposition 3.6. Next, we characterize the bias term, B ≡ limT→∞Q−1Q. From equation
(B.6), we have that

(IJ − Φ)Q = [(I− Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
(
−λK (H′B −A)

′
Ψ̂kQ− λχKA′

)
.

There exists a unique Q that satisfies this equation. We postulate that there exists Y such that

(IJ − Φ)Q = [(IJ − Φ)A+ΦH′BΛ−H′B]K′Y,

so that solving for Y pins down the unique Q. To proceed, first replace the guess for Q on the RHS of equation
(B.6),

RHS ≡ [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
(
−λK (H′B −A)

′
Ψ̂k (IJ − Φ)

−1
(IJ − Φ)Q− λχKA′

)
= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×
(
−λK (H′B −A)

′
Ψ̂k (IJ − Φ)

−1
[(IJ − Φ)A+ΦH′BΛ−H′B]K′Y − λχKA′

)
.
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Next, for the LHS of the equation, we have that

LHS ≡ (IJ − Φ)Q = [(IJ − Φ)A+ΦH′BΛ−H′B]K′Y,

and, substituting the last H′ using equation (B.5), it follows that

LHS = [(IJ − Φ) (A− T B) + ΦH′ (BΛ−HB)]
[
Im −K′SKB′ (BΩB′)

−1
B
]
K′Y

= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S
[
S−1 −KB′ (BΩB′)

−1
BK′

]
Y

= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×
{
Ω−1

µ + λ
(
K (H′B −A)

′
Ψ̂k (H′B −A)K′ − γKA′AK′

)}
Y,

where the last equality uses the definition of S. Putting these results together, we have that

LHS − RHS = [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×

{
λK (H′B −A)

′
Ψ̂k

{
(H′B −A)K′ + (IJ − Φ)

−1
[(IJ − Φ)A+ΦH′BΛ−H′B]K′

}
Y

Ω−1
µ Y − λγKA′AK′Y − λχKA′

}
= [(IJ − Φ) (A− TB) + ΦH′ (BΛ−HB)]K′S

×
{
Ω−1

µ Y + λK (H′B −A)
′
Ψ̂k (IJ − Φ)

−1
ΦH′B (Λ− Im)K′Y − λγKA′AK′Y − λχKA′

}
.

Since (Λ− Im)K′ = 0, a sufficient condition for LHS − RHS = 0 is

Ω−1
µ Y − λγKA′AK′Y − λχKA′ = 0,

which, using the Sherman-Morrison formula, implies that

Y = λχ
(
Ω−1

µ − λγKA′AK′)−1 KA′ = λχ

(
Ωµ +

λγ

1− λγAK′ΩµKA′ΩµKA′AK′Ωµ

)
KA′.

Therefore, we have that

Q = (IJ − Φ)
−1

[(IJ − Φ)A+ΦH′BΛ−H′B]K′Y

= (IJ − Φ)
−1 [

(IJ − Φ)
(
A−H′B

)
K′ +ΦH′B (Λ− Im)K′]Y

=
(
A−H′B

)
K′Y

=
(
A−H′B

)
K′λχ

(
Ωµ +

λγ

1− λγAK′ΩµKA′ΩµKA′AK′Ωµ

)
KA′

= λτµχ

(
1 +

λγτµAK′ΩηKA′

1− λγτµAK′ΩηKA′

)(
A−H′B

)
K′ΩηKA′.

Taking the limit we obtain

B = lim
T→∞

Q−1Q =
λτµχ

1− λγτµV(ξt)
COV(κξt −Kt, ξt),
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which completes the proof of part 3 of the proposition.

B.2 Inefficient economies

The economy in our baseline setup is assumed to be efficient under both complete and incomplete information.
We now consider a generalized utility in the vein of Angeletos and Pavan (2007),

u (kit, kt, ξt) = −1

2

[
(1− α) (kit − ξt)

2
+ α (kit −Kt)

2
]
− 1

2
γξ2t − χξt −

1

2
ψ (Kt − ξt)

2 − ϕKtξt − φKt, (B.8)

which allows inefficiencies under both complete and incomplete information. Specifically, it can be shown that:

• Under complete information, the equilibrium allocation is such that kit = Kt = ξt, whereas the efficient
allocation is such that kit = Kt = κ∗1ξt + κ∗0 with (κ∗1, κ

∗
0) being given by

κ∗1 =
1− (α− ψ)− ϕ

1− (α− ψ)
, , and κ∗0 =

φ

1− (α− ψ)
.

• Under incomplete information, the equilibrium degree of coordination is α, while the efficient degree of
coordination is α∗ = α− ψ.

The following proposition generalizes our equivalence result to the utility function in equation (B.8). The
equilibrium strategy still features the simple form, which results in additional sensitivity and bias.

Proposition B.3. The linear strategy in equilibrium takes the following form

g(xti) = (1 + r)p(L;w,α)xit + B. (B.9)

1. The polynomial matrix p(L;w,α) is the Bayesian forecasting rule with the (w,α)-modified signal process
and w satisfies

w =
τµ

(1 + ν1)− λ (1− α+ ψ) τµ

(
V (ξt −Kt) +

λγτµ(1+ν2)V(ξt)2(1−S)2

1−λγτµ(1+ν3)V(ξt)

) ;
2. The additional amplification, r, satisfies

r =
γλτµV (ξt) (1 + ν2)

1− γλτµV (ξt) (1 + ν3)

w

1 + w
(1− S) ;

3. The level of bias, B, satisfies

B =
χλτµV (ξt) (1− S) + ν4
1− γλτµV (ξt) + ν5

;
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4. Relative to Proposition 3.3, the inefficiencies imply the following correction terms

ν1 ≡
λ2ϕ2τ2µ

(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
− λϕτµV (ξt) (1− S)

1− λτµV (ξt) (2γ − ϕ (1 + S))
,

ν2 ≡ 1− ϕ

γ

(
2− V (ξt −Kt)

V (ξt) (1− S)

)
,

ν3 ≡ 1− ϕ

γ
(1 + S) ,

ν4 ≡ λφτµ (V (ξt) (1− S)− V (ξt −Kt))

− λ2τ2µ (ϕ (χ− φ) + 2γφ)
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
ν5 ≡ λτµV (ξt) (2ϕS − γ) + λ2τ2µϕ

2
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
.

It is easy to see that without inefficiencies, that is if ψ = ϕ = φ = 0, we have that ν1 = ν2 = ν3 = ν4 = ν5 = 0,
and the formulas reduce to the ones in Proposition 3.3.

Proof of Proposition B.3. Consider the same truncated version of the model described in the proof of
Proposition 3.3. For the utility in equation (B.8), we have that

p̂ (µ|xi) ∝ exp

(
−1

2
µ′S−1µ+

1

2
µ′S−1 (Mxi + π) +

1

2
(Mxi + π)

′
S−1µ

)
,

where matrices M , π, and S are such that

M ≡ SK (BΩB′)
−1
, π ≡ S [−λ (1− α∗)h0K (A′ −B′h) + λχKA′ + λφKB′h] ,

and

S ≡
(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ − λ [(1− α∗)K (A′ −B′h) (A− h′B)K′ + γKA′AK′]

− λϕK (ΛB′hA+A′h′BΛ)K′
)−1

,

which, using ϕ = (1− α∗)(1− κ∗1), can be rearranged into

S =
(
KB′ (BΩB′)

−1
BK′ +Ω−1

µ − λγ∗KA′AK′ − λ (1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′

)−1

,

where
γ∗ ≡ γ + (1− α∗)(1− (κ∗1)

2).

We have the same equilibrium conditions for h and h0 as in Proposition 3.3, equations (A.4) and (A.5), and
the proof proceeds analogously and we keep the same structure to facilitate comparison.

Lemma B.5. Define

Ω̂ ≡ Ω+K′WK, T̂ ≡ AΩ̂B′
(
BΩ̂B′

)−1

, Ĥ ≡ BΛΩ̂B′
(
BΩ̂B′

)−1

,
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and
W ≡

(
Ω−1

µ − λγ∗KA′AK′ − λ (1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′

)−1

.

Then, the equilibrium h solves the following fixed-point problem

h′ = (1− α) T̂ + αh′Ĥ.

Proof. This proof is exactly analogous to the proof of Lemma A.1. In particular, notice that W and S are
still such that

S =
(
KB′ (BΩB′)

−1
BK′ +W−1

)−1

.

Lemma B.6. Define

ΩΓ ≡ Γ Ω̂, with Γ ≡

[
Iu 0u,m−u

0m−u,u
Im−u

1−α

]
.

Then, the equilibrium h satisfies

h′ = AΩΓB
′ (BΩΓB

′)
−1
.

Proof. This lemma is exactly the same as Lemma A.2, and is repeated here just for convenience.

Lemma B.7. Define
∆ ≡ ΓΩ + ŵτ−1

µ K′Ω̃µK,

and

Ω̃µ ≡
(
Ω−1

µ − λγ∗KA′AK′ − λ (1− α∗)K [(κ∗1A
′ −B′h) (κ∗1A− h′B)− (A′ −B′h) (A− h′B)]K′)−1

,

with the scalar ŵ given by

ŵ ≡ τµ

1− λ(1− α∗) (A− h′B)K′Ω̃µK (A′ −B′h)
.

Then, the equilibrium h satisfies
h′ = A∆B′ (B∆B′)

−1
.

Proof. It follows from Lemma B.6 that
(A− h′B)ΩΓB

′ = 0,

and from the definition of ΩΓ and Ω̃µ we have that

ΩΓ = ΓΩ+K′
(
Ω̃−1

µ − λ(1− α∗)K (A′ −B′h) (A− h′B)K′
)−1

K.
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It is then sufficient to show that

(A− h′B)
(
ΓΩ + ŵτ−1

µ K′Ω̃µK
)
= (A− h′B)

(
ΓΩ +K′

(
Ω̃−1

µ − λ (1− α∗)K (A′ −B′h) (A− h′B)K′
)−1

K
)
,

or, equivalently,

ŵτ−1
µ (A− h′B)K′Ω̃µK =(A− h′B)K′

(
Ω̃−1

µ − λ (1− α∗)K (A′ −B′h) (A− h′B)K′
)−1

K

=(A− h′B)K′
(
Iu − λ (1− α∗) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

Ω̃µK.

Thus, it is sufficient to establish that

ŵτ−1
µ (A− h′B)K′ =(A− h′B)K′

(
Iu − λ (1− α∗) Ω̃µK (A′ −B′h) (A− h′B)K′

)−1

.

It follows that

ŵτ−1
µ (A− h′B)K′

(
Iu − λ (1− α∗) Ω̃µK (A′ −B′h) (A− h′B)K′

)
=(A− h′B)K′,

which can be rewritten as

ŵτ−1
µ

(
1− λ (1− α∗) (A− h′B)K′Ω̃µK (A′ −B′h)

)
(A− h′B)K′ =(A− h′B)K′.

The definition of ŵ then yields the result.

Lemma B.8. Let

ω ≡ − γ

(1− α∗) (1− κ∗1)
, v1 ≡ −γλ

ω
KA′, v2 ≡ K (ωA′ −B′h) ,

and
cij ≡ v′iΩµvj , for i, j ∈ {1, 2}, and si ≡ (A− h′B)K′Ωµvi, for i ∈ {1, 2}.

Further, define
∆̃ ≡ ΓΩ + w̃τ−1

µ K′ΩµK,

with the scalar w̃ given by

w̃ =

(
1 +

c11s2 − (1 + c12) s1
(1 + c12) (1 + c21)− c11c22

)
ŵ,

and let the scalar r̃ be given by

r̃ = −
λγ
ω (c22s1 − (1 + c21) s2) + (1− ω) (c11s2 − (1 + c12) s1)

(1 + c12) (1 + c21)− c11c22 + c11s2 − (1 + c12) s1

w̃

1 + w̃
.

Then, the equilibrium h satisfies
h′ = (1 + r̃)A∆̃B′

(
B∆̃B′

)−1

.
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Proof. From the definition of Ω̃µ in Lemma B.7, we have that

Ω̃µ =
(
Ω−1

µ + λ (1− α∗) (1− κ∗1)K [A′ (ωA− h′B) + (ωA′ −B′h)A]K′
)−1

,

with
ω ≡

(1− α∗)
(
1− (κ∗1)

2
)
− γ∗

(1− α∗) (1− κ∗1)
= − γ

(1− α∗) (1− κ∗1)
.

Thus, defining
v1 ≡ −γλ

ω
KA′, and v2 ≡ K (ωA′ −B′h) ,

we can write
Ω̃µ = (Ω−1

µ + v1v
′
2 + v2v

′
1)

−1,

and applying the Sherman-Morrison formula twice, we obtain

Ω̃µ = Ωµ +
c11Ωµv2v

′
2Ωµ + c22Ωµv1v

′
1Ωµ − (1 + c12)Ωµv1v

′
2Ωµ − (1 + c21)Ωµv2v

′
1Ωµ

(1 + c12) (1 + c21)− c11c22
,

with
cij ≡ v′iΩµvj , for i, j ∈ {1, 2}.

Thus, from the definition of ∆ in Lemma B.7 and defining

∆̄ ≡ ΓΩ + ŵτ−1
µ K′ΩµK,

we have that
∆ = ΓΩ+ ŵτ−1

µ K′Ω̃µK = ∆̄ + ŵτ−1
µ K′ΩµV ΩµK,

with
V ≡ c11v2v

′
2 + c22v1v

′
1 − (1 + c12) v1v

′
2 − (1 + c21) v2v

′
1

(1 + c12) (1 + c21)− c11c22
.

Hence, it follows from the result in Lemma B.7 that

h′ = A
(
∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′ [B (∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′]−1

,

and, therefore,
h′
[
B
(
∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′] = A

(
∆̄ + ŵτ−1

µ K′ΩµV ΩµK
)
B′.

Rearranging, we get

h′B∆̄B′ + ŵτ−1
µ h′BK′ΩµV ΩµKB′ = A∆̄B′ + ŵτ−1

µ AK′ΩµV ΩµKB′,

and right-multiplying both side by
(
B∆̄B′)−1 yields

h′ = A∆̄B′ (B∆̄B′)−1
+ ŵτ−1

µ (A− h′B)K′ΩµV ΩµKB′ (B∆̄B′)−1
.
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Defining
si ≡ (A− h′B)K′Ωµvi, for i ∈ {1, 2},

we obtain

h′ = A∆̄B′ (B∆̄B′)−1
+ ŵτ−1

µ

(c22s1 − (1 + c21) s2) v
′
1 + (c11s2 − (1 + c12) s1) v

′
2

(1 + c12) (1 + c21)− c11c22
ΩµKB′ (B∆̄B′)−1

= A∆̄B′ (B∆̄B′)−1
+ ŵτ−1

µ α1AK′ΩµKB′ (B∆̄B′)−1
+ ŵτ−1

µ α2h
′BK′ΩµKB′ (B∆̄B′)−1

with

α1 ≡
− (c22s1 − (1 + c21) s2)

γλ
ω + (c11s2 − (1 + c12) s1)ω

(1 + c12) (1 + c21)− c11c22
, and α2 ≡ − (c11s2 − (1 + c12) s1)

(1 + c12) (1 + c21)− c11c22
.

Next, notice that
K′ΩµK = τµK′KΩ,

and
∆̄ =

(
(1 + ŵ)K′K + (1− α)

−1
(Im −K′K)

)
Ω,

so we have
K′ΩµK =

τµ
1 + ŵ

K′K∆̄.

Thus, it follows that

h′ =

(
1 + α1

ŵ

1 + ŵ

)
A∆̄B′ (B∆̄B′)−1

+ α2
ŵ

1 + ŵ
h′BK′K∆̄B′ (B∆̄B′)−1

,

or
h′ = β1A∆̄B

′ (B∆̄B′)−1
+ β2h

′BK′K∆̄B′ (B∆̄B′)−1

with
β1 ≡ 1 + α1

ŵ

1 + ŵ
, and β2 = α2

ŵ

1 + ŵ

Define
∆̃ ≡ (Im − β2K′K) ∆̄,

and guess that
h′ =

β1
1− β2

A∆̃B′
(
B∆̃B′

)−1

.

It follows that

β1
1− β2

A∆̃B′
(
B∆̃B′

)−1

B∆̄B′ = β1A∆̄B
′ +

β1
1− β2

β2A∆̃B
′
(
B∆̃B′

)−1

BK′K∆̄B′

β1
1− β2

A∆̃B′
(
B∆̃B′

)−1

B (Im − β2K′K) ∆̄B′ = β1A∆̄B
′

β1A∆̃B
′ = β1 (1− β2)A∆̄B

′,
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which verifies the guess, since A∆̃ = (1− β2)A∆̄. Finally, we have that

∆̃ = (Im − β2K′K)
(
(1 + ŵ)K′K + (1− α)

−1
(Im −K′K)

)
Ω

=
(
(1− β2) (1 + ŵ)K′K + (1− α)

−1
(Im −K′K)

)
Ω

= ΓΩ + w̃τ−1
µ K′ΩµK,

with
w̃ = (1− β2) (1 + ŵ)− 1 =

(
1− α2

ŵ

1 + ŵ

)
(1 + ŵ)− 1 = (1− α2)ŵ.

and

r̃ =
β1

1− β2
− 1 =

1 + α1
ŵ

1+ŵ

1− α2
ŵ

1+ŵ

− 1 =
α1 + α2

1− α2

w̃

1 + w̃
.

Substituting the definitions of α1 and α2 yields the result.

Parts 1 and 2 of Proposition B.3. Given the result in Lemma B.8, we are left with taking the limit as
T → ∞ of the truncated problem. In particular, we have that

lim
T→∞

c11 = τµ

(
γλ

ω

)2

V (ξt) , lim
T→∞

c12 = lim
T→∞

c21 = −τµ
γλ

ω
COV (ωξt −Kt, ξt) ,

lim
T→∞

c22 = τµV (ωξt −Kt) , lim
T→∞

s1 = −τµ
γλ

ω
COV (ξt −Kt, ξt) , and

lim
T→∞

s2 = τµCOV (ωξt −Kt, ξt −Kt) .

Notice that

ŵ =
τµ

1− λ(1− α∗)
{
(A− h′B)K′ΩµK (A′ −B′h) +

c11s22+c22s21−(2+c12+c21)s1s2
(1+c12)(1+c21)−c11c22

} .
Let w ≡ limT→∞ w̃, and r ≡ limT→∞ r̃. Using equations ω = γ

(1−α∗)(1−κ∗
1)

, α∗ = α−ψ, and (1− α∗) (1− κ∗1) =

ϕ, in order to return to primitive parameters, it follows that

w =
τµ (1 + λ (1− α+ ψ) rV (ξt) (1− S))

1− λ (1− α+ ψ) τµ (V (ξt −Kt) + rV (ξt) (1− S)) + ν1
,

and
r =

γλτµV (ξt) (1 + ν2)

1− γλτµV (ξt) (1 + ν3)

w

1 + w
(1− S) ,
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with

ν1 ≡
λ2ϕ2τ2µ

(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
− λϕτµV (ξt) (1− S)

1− λτµV (ξt) (2γ − ϕ (1 + S))
,

ν2 ≡ 1− ϕ

γ

(
2− V (ξt −Kt)

V (ξt) (1− S)

)
,

ν3 ≡ 1− ϕ

γ
(1 + S) .

This completes the proof of parts 1 and 2 of Proposition B.3.

Part 3 of Proposition B.3. Next, we switch focus to the level of the B ≡ limT→∞ h0. From equation
(A.5) and the definition of π, we have that

(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]

×K′S [−λ (1− α∗)h0K (A′ −B′h) + λχKA′ + λφKB′h] ,

which, using φ = (1− α∗)κ∗0 and defining χ∗ ≡ χ+ (1− α∗)κ∗0, can be rewritten as

(1− α)h0 = [(1− α) (A− TB) + αh′ (BΛ−HB)]

×K′S [−λ (1− α∗) (h0 + κ∗0)K (A′ −B′h) + λχ∗KA′] . (B.10)

It is straightforward to see there exists a unique h0 that satisfies this equation. We postulate that there exists
µ̃ such that

(1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,

so that solving for µ̃ pins down the unique h0. To proceed, first replace the guess for h0 on the RHS of equation
(B.10),

RHS ≡ [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S [−λ (1− α∗) (h0 + κ∗0)K (A′ −B′h) + λχ∗KA′]

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{
−λK (A′ −B′h) (1− α∗)

{
[(1− α) (A− h′B) + αh′B (Λ− Im)]K′µ̃

1− α
+ κ∗0

}
+ λχ∗KA′

}
Next, for the LHS of the equation, we have that

LHS ≡ (1− α)h0 = [(1− α)A+ αh′BΛ− h′B]K′µ̃,
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and, substituting the last h using equation (A.4), it follows that

LHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]
[
Im −K′SKB′ (BΩB′)

−1
B
]
K′µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S
[
S−1 −KB′ (BΩB′)

−1
BK′

]
µ̃

= [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{
Ω−1

µ − λ [(1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′ + γ∗KA′AK′]

}
µ̃,

where the last equality uses the definition of S. Putting these results together, we have that

LHS − RHS = [(1− α) (A− TB) + αh′ (BΛ−HB)]K′S

×
{{

Ω−1
µ − λ [(1− α∗)K (κ∗1A

′ −B′h) (κ∗1A− h′B)K′ + γ∗KA′AK′]
}
µ̃

+ λ(1− α∗)K (A′ −B′h) (A− h′B)K′µ̃+ λ (1− α∗)κ∗0K (A′ −B′h)− λχ∗KA′
}
,

where we used the fact that K (A′ −B′h)h′B (Λ− Im)K′ = 0. Thus, a sufficient condition for LHS−RHS = 0

is {
Ω−1

µ − λ [(1− α∗)K (κ∗1A
′ −B′h) (κ∗1A− h′B)K′ + γ∗KA′AK′]

}
µ̃

+λ(1− α∗)K (A′ −B′h) (A− h′B)K′µ̃+ λ (1− α∗)κ∗0K (A′ −B′h)− λχ∗KA′ = 0.

Notice that, using the definitions from Lemma B.8, this equation can be rewritten as{
Ω−1

µ + v1v
′
1 + v2v

′
2

}
µ̃ = −λ (1− α∗)κ∗0K (A′ −B′h) + λχ∗KA′.

It follows that
µ̃ = {Ωµ +ΩµV Ωµ} {−λ (1− α∗)κ∗0K (A′ −B′h) + λχ∗KA′},

and, therefore,

h0 = (1− α)
−1

[(1− α)A+ αh′BΛ− h′B]K′µ̃

= (A− h′B)K′µ̃

= (A− h′B)K′ {Ωµ +ΩµV Ωµ} {−λ (1− α∗)κ∗0K (A′ −B′h) + λχ∗KA′}

= −λ (1− α∗)κ∗0

{
(A− h′B)K′ΩµK (A′ −B′h) +

c11s
2
2 + c22s

2
1 − (2 + c12 + c21) s1s2

(1 + c12) (1 + c21)− c11c22

}
+ λχ∗

{
(A− h′B)K′ΩµKA′ +

c11s2z2 + c22s1z1 − (1 + c12) s1z2 − (1 + c21) s2z1
(1 + c12) (1 + c21)− c11c22

}
,

with
zi ≡ AK′Ωµvi, for i ∈ {1, 2}.

Notice that we have the following limits

lim
T→∞

z1 = −τµ
γλ

ω
V (ξt) , and lim

T→∞
z2 = τµCOV (ωξt −Kt, ξt) .
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Therefore, using χ∗ = χ+ φ, and (1− α∗)κ∗0 = φ, we obtain the bias as a function of primitive parameters,

B =
χλτµV (ξt) (1− S) + ν4
1− γλτµV (ξt) + ν5

,

with

ν4 ≡ λφτµ (V (ξt) (1− S)− V (ξt −Kt))

− λ2τ2µ (ϕ (χ− φ) + 2γφ)
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
ν5 ≡ λτµV (ξt) (2ϕS − γ) + λ2τ2µϕ

2
(
V (ξt)

2
(1− S)2 − V (ξt)V (ξt −Kt)

)
,

which completes the proof of part 3 of the proposition.

B.3 Multiple aggregate shocks

Consider the same setup described in Section 3, but suppose that the common fundamental, ξt, is now driven
by a Z × 1 vector of shocks, ηt according to the following stochastic process:

ξt = a(L)ηt, with ηt ∼ N (0,Ση),

where a(L) is a polynomial in the lag operator L. In the objective environment, ηt is normally distributed
with mean zero: µt = 0. Subjectively, agents believe that ηt is drawn from a Gaussian distribution with the
same covariance matrix, Ση, but there is uncertainty about its prior mean, denoted by the Z × 1 vector µt.
Ambiguity about ξt is then captured by the perception that

ηt ∼ N (µt,Ση), and µt ∼ N (0,Σµ).

In Section 3, the degree of ambiguity is captured by the σ2
µ. Here, the covariance matrix Σµ plays this role.

Without loss of generality, we assume that Ση and Σµ are diagonal matrices, that is Ση = diag(σ2
η,1, . . . , σ

2
η,Z)

and Σµ = diag(σ2
µ,1, . . . , σ

2
µ,Z).

Auxiliary forecasting problem Consider the following pure forecasting problem, which we later link back
to the economy with ambiguity.

Definition B.3. The (w,α, {ri}Zi=1)-modified signal process is given by

ξ̃t = a(L) diag(1 + r1, . . . , 1 + rq)η̃t, with η̃t ∼ N (0,Ση + wΣµ),

x̃it = m(L)η̃t + n(L)ϵ̃it, with ϵ̃it ∼ N (0, (1− α)−1Σ),

where w is a non-negative scalar and α is the degree of complementarity. Let the optimal Bayesian forecast be
given by

Ẽit[ξ̃t] = p(L;w,α, {ri}Zi=1)x̃it.

This modified signal process is analogous to the baseline. The adjustment w to the volatility of ηt is the
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counterpart to w̃ = wτ−1
µ in the univariate baseline, that is Ση + wΣµ is the counterpart of (1 + w)σ2

η =

(1 + w̃τµ)σ
2
η = σ2

η + w̃σ2
µ. Further, the amplification factor, (1 + r) in the univariate case, has now been

incorporated into this modified signal process since in the multivariate case each shock requires a potentially
different adjustment, before being put together into a modified fundamental. So, p(L;w,α, {ri}Zi=1) here is the
counterpart of (1+r)p(L;w,α) in the univariate case. To proceed we need the additional following definitions.

Definition B.4. Define the µ-modified fundamental and (unbiased) aggregate action as

ξµt = a(L)µt, and Kµ
t = p(L;w,α, {ri}Zi=1)µt,

and the µ-modified aggregate sensitivity to signals as

Sµ ≡ 1− COV (ξµt −Kµ
t , ξ

µ
t )

V (ξµt )
.

We can then prove the following proposition.

Proposition B.4. The linear strategy in equilibrium takes the following form

g(xti) = p(L;w,α, {ri}Zi=1)xit + B.

1. The polynomial matrix p(L;w,α, {ri}Zi=1) is the Bayesian forecasting rule with the (w,α, {ri}Zi=1)-
modified signal process and w satisfies

w =
1

1− λ(1− α)
(
V (ξµt −Kµ

t ) +
λγV(ξµt )

2(1−Sµ)2

1−λγV(ξµt )

) ;
2. For all i ∈ {1, . . . , Z}, the additional amplification, ri, satisfies

ri = γ
λV (ξµt )

1− λγV (ξµt )

wτµ,i
1 + wτµ,i

(1− Sµ);

3. The level of bias, B, satisfies

B = χ
λV (ξµt )

1− λγV (ξµt )
(1− Sµ) .

Proof of Proposition B.4. The truncated version of the problem is analogous to the case with one common
shock, with the following adjustments: (1) the size of the vector of aggregate common shocks must be set to
u ≡ Z(T + 1); (2) the size of the vector of all shocks becomes m ≡ (Z +N)(T + 1); (3) instead of Ωη = Iu σ

2
η

and Ωµ = Iu σ
2
µ, we now have Ωη = IT+1 ⊗Ση and Ωµ = IT+1 ⊗Σµ. These modifications do not affect in any

way the results in Lemmas A.1, A.2, and A.3. However, Lemma A.4 relies on the fact that Ωη = Iu σ
2
η and

Ωµ = Iu σ
2
µ. The following lemma provides the relevant analogous result.

Lemma B.9. Define
∆̄ ≡ ΓΩ + ŵK′ΩµK,
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with the scalar ŵ given by

ŵ =
1

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

.

Also, let the diagonal matrix R̂ be given by

R̂ ≡ IT+1 ⊗ diag (r̂1, . . . , r̂Z) ,

with the scalars r̂i, for i ∈ {1, . . . , Z}, given by

r̂i ≡
ŵτµ,i

1 + ŵτµ,i

(
λγ

1− λγAK′ΩµKA′

)
(A− h′B)K′ΩµKA′, with τµ,i ≡

σ2
µ,i

σ2
η,i

.

Then, the equilibrium h satisfies
h′ = A (Im + R̂) ∆̄B′ (B∆̄B′)−1

.

Proof. From the definition of Ω̃µ and ∆ in Lemma A.3, we have that

Ω̃µ ≡
(
Ω−1

µ − λγKA′AK′)−1
= Ωµ +

λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′ .

Thus, it follows that

∆ ≡ ΓΩ + ŵK′Ω̃µK = ∆̄ + ŵK′
(
λγΩµKA′AK′Ωµ

1− λγAK′ΩµKA′

)
K = ∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K,

with s ≡ λγ/(1− λγAK′ΩµKA′). Hence, it follows from the result in Lemma A.3 that

h′ = A
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′ [B (∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′]−1

,

and, therefore,

h′
[
B
(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′] = A

(
∆̄ + sŵK′ (ΩµKA′AK′Ωµ)K

)
B′.

Rearranging, we get

h′B∆̄B′ + sŵh′BK′ (ΩµKA′AK′Ωµ)KB′ = A∆̄B′ + sŵAK′ (ΩµKA′AK′Ωµ)KB′,

and right-multiplying both sides by
(
B∆̄B′)−1 yields

h′ = A∆̄B′ (B∆̄B′)−1
+ sŵ (A− h′B)K′ΩµKA′AK′ΩµKB′ (B∆̄B′)−1

= A∆̄B′ (B∆̄B′)−1
+ ẑŵAK′ΩµKB′ (B∆̄B′)−1

.

Next, notice that
K′ΩµK = K′ΩµΩ

−1
η KΩ,
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and
∆̄ =

(
K′(Iu + ŵΩµΩ

−1
η )K + (1− α)

−1
(Im −K′K)

)
Ω,

so we have
K′ΩµK = K′ (Ωµ(Ωη + ŵΩµ)

−1
)
K∆̄.

Thus, it follows that

h′ = A∆̄B′ (B∆̄B′)−1
+ ẑŵAK′ (Ωµ(Ωη + ŵΩµ)

−1
)
K∆̄B′ (B∆̄B′)−1

,

with the scalar ẑ given by

ẑ ≡
(

λγ

1− λγAK′ΩµKA′

)
(A− h′B)K′ΩµKA′.

Further, we can write
h′ = A (Im + R̂) ∆̄B′ (B∆̄B′)−1

,

with

R̂ = K′ (ẑŵΩµ(Ωη + ŵΩµ)
−1
)
K

= K′ (ẑŵ(IT+1 ⊗ Σµ)((IT+1 ⊗ Ση) + ŵ(IT+1 ⊗ Σµ))
−1
)
K

= K′ (IT+1 ⊗ (ẑŵΣµ(Ση + ŵΣµ)
−1)
)
K

= K′ (IT+1 ⊗ diag
(
ẑŵσ2

µ,1(σ
2
η,1 + ŵσ2

µ,1)
−1, . . . , ŵσ2

µ,Z(σ
2
η,Z + ŵσ2

µ,Z)
−1
))

K

= K′ (IT+1 ⊗ diag (r̂1, . . . , r̂Z))K,

which concludes the proof.

Parts 1 and 2 of Proposition B.4. Given the result in Lemma B.9, we are left with taking the limit as
T → ∞ of the truncated problem. In particular, we have that

lim
T→∞

A (Im + R̂) ∆̄B′ (B∆̄B′)−1
= p

(
L;w,α, {ri}Zi=1

)
, lim

T→∞
AK′ΩµKA′ = V(ξµt ),

lim
T→∞

(A− h′B)K′ΩµK(A′ −Bh′) = V(ξµt −Kµ
t ), lim

T→∞
(A− h′B)K′ΩµKA′ = COV (ξµt −Kµ

t , ξ
µ
t ) ,

lim
T→∞

(A− h′B)K′ΩµKA′

AK′ΩµKA′ = 1− Sµ.

Let w ≡ limT→∞ ŵ, and ri ≡ limT→∞ r̂i, for i ∈ {1, . . . , Z}. Then, we can show that

ri = lim
T→∞

ŵτµ,i
1 + ŵτµ,i

λγAK′ΩµKA′

1− λγAK′ΩµKA′
(A− h′B)K′ΩµKA′

AK′ΩµKA′

=
wτµ,i

1 + wτµ,i

λγV (ξµt )

1− λγV (ξµt )
(1− Sµ) ,
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and

w = lim
T→∞

1

1− λ (1− α) (A− h′B)K′
(
Ωµ +

λγΩµKA′AK′Ωµ

1−λγAK′ΩµKA′

)
K (A′ −B′h)

= lim
T→∞

1

1− λ (1− α)
(
(A− h′B)K′ΩµK (A′ −B′h) +

λγ((A−h′B)K′ΩµKA′)(AK′ΩµK(A′−B′h))
1−λγAK′ΩµKA′

)
=

1

1− λ(1− α)
(
V (ξµt −Kµ

t ) +
λγV(ξµt )

2(1−Sµ)2

1−λγV(ξµt )

) .
Part 3 of Proposition B.4. All the steps used in the proof of part 3 of Proposition 3.3 hold without
change except for the last step. From those derivations we have that

h0 = χλ (A− h′B)K′ΩµKA′
(
Iu +

λγAK′ΩµKA′

1− λγAK′ΩµKA′

)
Taking the limit we get

B = lim
T→∞

h0 = χλτµCOV(ξµt −Kµ
t , ξ

µ
t )

(
1 +

λγV(ξµt )
1− λγV(ξµt )

)
=

χλV (ξµt )

1− λγV (ξµt )
(1− Sµ) ,

which completes the proof of part 3 of the proposition.
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C Proofs of Other Results

Proof of Proposition 2.1. Following the same arguments used in the proof of Proposition 3.2, the optimal
linear strategy, g (xi) ≡ s∗xi + B, solves the following fixed point problem

s∗xi + B =

∫
µ

Eµ [ξ|xi] p̂ (µ|xi) dµ =
σ2
ξ

σ2
ξ + σ2

ϵ

xi +
σ2
ϵ

σ2
ξ + σ2

ϵ

∫
µ

µ p̂ (µ|xi) dµ,

with

p̂ (µ|xi) ∝ exp
(
λEµ

[
(s∗xi + B − ξ)

2 − χξ
])
p (xi|µ) p (µ)

∝ exp

λ (1− s∗)
2
µ2 + 2λ (s∗ − 1)Bµ− χµ− (xi − µ)

2

2
(
σ2
ξ + σ2

ϵ

) − 1

2σ2
µ

µ2

 .

Mapping it into the kernel of a normal distribution yields

µ ∼ N

 1
σ2
ξ+σ2

ϵ
xi + 2λ (s∗ − 1)B − λχ

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 ,
1

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2

 ,

which implies that

∫
µ

µ p̂ (µ|xi) dµ =

1
σ2
ξ+σ2

ϵ
xi + 2λ (s∗ − 1)B − λχ

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 .

Matching coefficients leads to the following conditions

s∗ =
σ2
ξ

σ2
ξ + σ2

ϵ

+
σ2
ϵ

σ2
ξ + σ2

ϵ

1
σ2
ξ+σ2

ϵ

1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 ,

and

B =
σ2
ϵ

σ2
ξ + σ2

ϵ

2λ (s∗ − 1)B − λχ
1
σ2
µ
+ 1

σ2
ξ+σ2

ϵ
− 2λ (1− s∗)

2 .

Solving for s∗ and B leads to the expressions stated in the proposition.

Proof of Corollary 3.1. Aggregating the individual best response in equation (3.6) leads to

Kt = (1− α)F1

t [ξt] + αF1

t [Kt] .
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Iterating forward using the definitions of subjective higher-order expectations, it follows that

Kt = (1− α)F1

t [ξt] + α (1− α)F2

t [ξt] + α2F2

t [Kt]

= · · ·

= (1− α)

N∑
j=0

αjFj+1

t [ξt] + αN+1FN+1

t [Kt]

= · · ·

= (1− α)

∞∑
j=0

αjFj+1

t [ξt] ,

which completes the proof.

Proof of Corollary 3.2. This result follows directly from the fact that p (L;w,α) permits a finite state
representation.

Proof of Proposition 3.4. Applying Proposition 3.3, we obtain

Fi [ξ] = ςxi − (1− ς)λχσ2
µ, with ς ≡

(1 + w)σ2
ξ

(1 + w)σ2
ξ + σ2

ϵ

.

Aggregating over i, it follows that
F [ξ] = ςξ − (1− ς)λχσ2

µ.

Applying the operator Fi to both sides and aggregating again yields,

F2
[ξ] = ς2ξ − (1− ς) (1 + ς)λχσ2

µ.

Iterating forward, it follows that

Fm
[ξ] = ςmξ − (1− ς)

m−1∑
k=0

ςkλχσ2
µ = κmξ + βm,

with

κm ≡ ςm, and βm ≡ − (1− ς)

m−1∑
k=0

ςkλχσ2
µ.

Therefore, we have that

βm = βm−1 − (1− ς)κm−1λχσ
2
µ = βm−1 + (κm − κm−1)λχσ

2
µ,

which completes the proof of Part 1. Moreover, combing equation (3.7) with the fact that Fm
[ξ] = κmξ+βm

leads to

K = (1− α)

∞∑
m=0

αmκm ξ + (1− α)

∞∑
m=0

αmβm,
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which completes the proof of Part 3.

To establish Part 2 notice that, from Proposition 3.3, we have

w =

[
1

τµ
− λ (1− α)V (ξ −K)

]−1

,

which, differentiating with respect to α, yields

dw

dα
= λw2

[
(1− α)

dV (ξ −K)

dα
− V (ξ −K)

]
.

Since

V (ξ −K) =

(
σ2
ϵ

(1 + w) (1− α)σ2
ξ + σ2

ϵ

)2

σ2
ξ ,

it follows that

dV (ξ −K)

α
= 2

(
σ2
ξ

(1 + w) (1− α)σ2
ξ + σ2

ϵ

)
V (ξ −K)

(
w − (1− α)

dw

dα

)
,

and, therefore,

dw

dα
= λw2V (ξ −K)

[
2 (1− α)

(
σ2
ξ

(1 + w) (1− α)σ2
ξ + σ2

ϵ

)(
w − (1− α)

dw

dα

)
− 1

]

=
λw2V (ξ −K)

(
(w − 1) (1− α)σ2

ξ − σ2
ϵ

)
[1 + w + 2λ (1− α)w2V (ξ −K)] (1− α)σ2

ξ + σ2
ϵ

.

Then, since, in the limit as α increases to 1, we have that w → τµ, and V(ξ −K) → V(ξ), it follows that

lim
α→1−

dw

dα
= −λτ2µV(ξ) < 0.

On the other hand, notice that

sgn
[
lim

α→0+

dw

dα

]
= sgn

[
(w − 1)σ2

ξ − σ2
ϵ

]
,

so that, since w ≥ τµ, we have that

τµ >
σ2
ξ + σ2

ϵ

σ2
ξ

⇒ lim
α→0+

dw

dα
> 0.

Hence, w is non-monotonic in α if τµ is large enough.
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Proof of Proposition 3.5. It follows from Proposition 3.3 that, when γ = 0,

B = χλτµV (ξt) (1− S) .

Therefore, to prove that |B| is increasing in α, it is sufficient to prove that the sensitivity S is decreasing in
α. Since, by definition

S =
COV (Kt, ξt)

V (ξt)
,

with V (ξt) independent of α, it is sufficient to show that

dCOV (Kt, ξt)

dα
< 0.

Following the notation of the truncated economy introduced in the proof of Proposition 3.3, we have that

COV (Kt, ξt) = h′BΛΩA′,

with h denoting the optimal forecasting rule

h = AΩ̄B′ (BΩ̄B′)−1
, with Ω̄ = (1 + w) ΛΩ + (1− α)

−1
(Im − Λ)Ω.

Since Ω is diagonal, we can rewrite h as

h = AΩ̂B′
(
BΩ̂B′

)−1

, with Ω̂ = ΛΩ +mα (Im − Λ)Ω, and mα ≡ [(1− α) (1 + w)]
−1
.

It follows that

dCOV (Kt, ξt)

dα
= AΩΛB′

d
(
BΩ̂B′

)−1

dα
BΛΩA′

= −AΩΛB′
(
BΩ̂B′

)−1

B
dΩ̂

dα
B′
(
BΩ̂B′

)−1

BΛΩA′

= − (z′ (Im − Λ)Ω z)m2
α

[
(1 + w)− (1− α)

dw

dα

]
,

where z is a column vector,
z ≡ B′

(
BΩ̂B′

)−1

BΛΩA′.

Since (Im − Λ)Ω is positive semi-definite, it follows that

sgn
[
dCOV (Kt, ξt)

dα

]
= −sgn

[
(1 + w)− (1− α)

dw

dα

]
.

Further, notice that since w ≥ τµ and limα→1− w = τµ, we have that the limα→1− dw/dα is bounded and,
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therefore,

lim
α→1−

dCOV (Kt, ξt)

dα
< 0.

Finally, for a contradiction, suppose there exists some α ∈ [0, 1) such that dCOV (Kt, ξt) /dα > 0. It follows
from the intermediate value theorem and the continuity of dCOV (Kt, ξt) /dα that there must exist some α†

such that

dCOV (Kt, ξt)

dα

∣∣∣∣
α=α†

= 0 ⇒ dw

dα

∣∣∣∣
α=α†

=
1 + w†

1− α†
> 0,

where w† denotes w evaluated at α†. With γ = 0, Proposition 3.3 implies that

w =

[
1

τµ
− λ (1− α)V (ξt −Kt)

]−1

,

and it follows that

dw

dα
= −λw2

[
V (ξt −Kt)− (1− α)

dV (ξt −Kt)

dα

]
.

Using the fact that, similarly to COV (ξt,Kt), V (ξt −Kt) depends on α only through mα, we have that

dV (ξt −Kt)

dα

∣∣∣∣
α=α†

=
dV (ξt −Kt)

dmα

dmα

dα

∣∣∣∣
α=α†

=
dV (ξt −Kt)

dmα
m2

α

[
(1 + w)− (1− α)

dw

dα

]∣∣∣∣
α=α†

= 0,

and, therefore,

dw

dα

∣∣∣∣
α=α†

= −λw2V (ξt −Kt) < 0,

which yields the desired contradiction.

Proof of Lemma 4.1. We start by characterizing the zero-inflation steady state. From the budget constraint
of household i, we have that

Ci,g,t+1 =
Yg − Ci,g,t

1 + πt+1
.

Substituting Ci,g,t+1 into the utility function U (Ci,g,t, Ci,g,t+1) yields

U (Ci,g,t, πt+1) =
C1−ν

i,g,t

1− ν
+ β

(
Yg−Ci,g,t

1+πt+1

)1−ν

1− ν
.

The Euler equation in the zero-inflation steady state implies that

C̄−ν
g − β

(
Yg − C̄g

)−ν
= 0. (C.1)
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Let ci,g,t be the log-deviation from the zero-inflation steady state, that is

ci,g,t ≡ logCi,g,t − log C̄g.

The quadratic approximation of U (Ci,g,t, πt+1) around the zero-inflation steady state leads to

U (Ci,g,t, πt+1) ≈ Q (ĉt, πt+1)

≡ const− C̄1−ν
g

(
Y − C̄g

C̄g

)
πt+1 + (1− ν) C̄1−ν

g ci,g,tπt+1

+
1

2
(1− ν) C̄1−ν

g

(
Yg − C̄g

C̄g

)
π2
t+1 −

1

2
νC̄1−ν

g

[
1 +

(
Yg − C̄g

C̄g

)−1
]
c2i,g,t

= const− C̄1−ν
g

(
Yg − C̄g

C̄g

)
πt+1 +

1

2
(1− ν) C̄1−ν

g

(
Yg − C̄g

C̄g
+

1− ν

ν

Yg − C̄g

Yg

)
π2
t+1

− 1

2
νC̄1−ν

g

Yg
Yg − C̄g

(
ci,g,t −

1− ν

ν

Yg − C̄g

Yg
πt+1

)2

.

Given subjective beliefs Fi,g,t [·], the optimal consumption must be proportional to the households subjective
expectation about inflation:

ci,g,t =
1− ν

ν

Yg − C̄g

Yg
Fi,g,t [πt+1]

=
β1/ν

1 + β1/ν
Fi,g,t [πt+1] ,

where the last equality directly follows equation (C.1).

In the smooth model of ambiguity, similarly to the proof of Proposition 3.2, it can be shown that

ci,g,t =
1− ν

ν

Yg − C̄g

Yg

∫
µt

Eµt

[πt+1|Ii,g,t] p̂
(
µt|Ii,g,t

)
dµt,

where the distorted posterior p̂ (µt|Ii,g,t) is such that

p̂
(
µt|Ii,g,t

)
∝ exp

(
−λEµt

[Q (ĉt, πt+1)]
)
.

Let the subjective belief of the household be such that

Fi,g,t [·] ≡
∫
µt

Eµt

[·|Ii,g,t] p̂
(
µt|Ii,g,t

)
dµt,

then, it follows that

ci,g,t =
β1/ν

1 + β1/ν
Fi,g,t [πt+1] ,
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which yields equation (4.2). Substituting ci,g,t into Q (ĉt, πt+1), leads to equation (4.3) with

χg ≡ Y 1−ν
g

β1/ν(
1 + β1/ν

)1−ν

γg ≡ 1

2
Y 1−ν
g

(ν − 1)β1/ν(
1 + β1/ν

)1−ν

1 + νβ1/ν

ν
(
1 + β1/ν

)
δg ≡ 1

2
Y 1−ν
g

(1− ν)
2
β1/ν

ν
(
1 + β1/ν

)2−ν .

Notice that δg, χg, and γg are all proportional to Y ν−1
g . Moreover, when ν > 1, they are all positive and

decreasing in Yg.

The following lemma is used in the proof of the next propositions.

Lemma C.1 (Kalman filter for AR(1)). Given a state equation

ξt = ρξt−1 + νt, with νt ∼ N
(
0, σ2

ν

)
,

and an observation equation
xt = ξt + ut, with ut ∼ N

(
0, σ2

u

)
,

the steady-state Kalman gain is given by

κ =
1

2ρ

ρ− σ2
u + σ2

ν

ρσ2
u

−

√(
ρ− σ2

u + σ2
ν

ρσ2
u

)2

+ 4
σ2
ν

σ2
u

 ,

and the updating rule for the Bayesian forecast follows

Et [ξt+1] = ρ (1− κ)Et−1 [ξt] + ρκxt.

Proof of Proposition 4.1. Cosider Lemma C.1 with ξt = πt, σ2
ν = σ2

η, and σ2
u = σ2

ε , and define ω ≡
ρ (1− κ). Since every agent i in every group g has the same information structure with signals given by

xi,g,t = πt + εi,g,t, with εi,g,t ∼ N
(
0, σ2

ε

)
,

it immediately follows from Lemma C.1 that

Ei,g,t [πt+1] = ωEi,g,t−1 [πt] + (ρ− ω)xi,g,t,

and

ω =
1

2

ρ+ σ2
ε + σ2

η

ρσ2
ε

−

√(
ρ+

σ2
ε + σ2

η

ρσ2
ε

)2

− 4

 .
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Integrating the updating rule for the forecast, we have that∫
Ei,g,t [πt+1] = ω

∫
Ei,g,t−1 [πt] + (ρ− ω)

∫
xi,g,t

and, therefore,
Eg,t [πt+1] = ωEg,t−1 [πt] + (ρ− ω)πt,

which can be rewritten as
Eg,t [πt+1] =

ρ− ω

1− ωL
πt.

The average forecast error is, then, given by

πt+1 − Eg,t [πt+1] = πt+1 −
ρ− ω

1− ωL
πt

=
ηt+1

1− ρL
− ρ− ω

1− ωL

Lηt+1

1− ρL

=
ηt+1

1− ωL
,

which concludes the proof.

Proof of Proposition 4.2. It follows from Proposition 3.3 that

Fi,g,t [πt+1] = (1 + rg)Ei,g,t [πt+1] + Bg

where Ei,g,t [πt+1] denotes the periot-t Bayesian forecast of πt+1 of agent i in group g given the (wg, 0)-modified
information structure (notice that here α = 0). Thus, setting ξt = πt, σ2

ν = (1 + w)σ2
η, and σ2

u = σ2
ε , it follows

from Lemma C.1 that
Ei,g,t [πt+1] = ρ (1− κg)Ei,g,t−1 [πt] + ρκgxi,g,t,

with

κg =
1

2ρ

(ρ− σ2
ε + (1 + wg)σ

2
η

ρσ2
ε

)
−

√(
ρ−

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

+ 4
(1 + wg)σ2

η

σ2
ε

 .

It follows that

(1 + rg)Ei,g,t [πt+1] + Bg = ρ (1− κg) ((1 + rg)Ei,g,t−1 [πt] + Bg) + (1 + rg) ρκgxi,g,t − ρ (1− κg)Bg + Bg

and, therefore,

Fi,g,t [πt+1] = ρ (1− κg)Fi,g,t−1 [πt] + (1 + rg) ρκgxi,g,t + (1− ρ (1− κg))Bg.

Defining ϑg ≡ ρ (1− κg), we obtain

Fi,g,t [πt+1] = ϑgFi,g,t−1 [πt] + (1 + rg) (ρ− ϑg)xi,g,t + (1− ϑg)Bg,
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with

ϑg =
1

2

ρ+ σ2
ε + (1 + wg)σ

2
η

ρσ2
ε

−

√(
ρ+

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

− 4

 .

Integrating the updating rule for the forecast, we have that∫
Fi,g,t [πt+1] = ϑg

∫
Fi,g,t−1 [πt] + (1 + rg) (ρ− ϑg)

∫
xi,g,t + (1− ϑg)Bg

and, therefore,
Fg,t [πt+1] = ϑgFg,t−1 [πt] + (1 + rg) (ρ− ϑg)πt + (1− ϑg)Bg,

which can be rewritten as
Fg,t [πt+1] =

(1 + rg) (ρ− ϑg)πt
1− ϑgL

+ Bg.

The average forecast error is, then, given by

πt+1 −Fg,t [πt+1] = πt+1 −
(1 + rg) (ρ− ϑg)πt

1− ϑgL
− Bg

=
(1 + rg) ηt+1

1− ϑgL
− rg

1− ρL
ηt+1 − Bg.

The fact that rg > 0, wg > 0, and Bg > 0 follows immediately from Proposition 3.3 together with the fact that
δg > 0, χg > 0, and γg > 0 established in Lemma 4.1 and that, by assumption, λ > 0 and σ2

µ > 0. Finally, to
see that ϑg < ω notice that, from the triangle inequality, we have that√(

ρ+
σ2
ε + σ2

η

ρσ2
ε

)2

− 4 +

√(
wgσ2

η

ρσ2
ε

)2

<

√(
ρ+

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

− 4,

so that
wgσ

2
η

ρσ2
ε

−

√(
ρ+

σ2
ε + (1 + wg)σ2

η

ρσ2
ε

)2

− 4 < −

√(
ρ+

σ2
ε + σ2

η

ρσ2
ε

)2

− 4.

Adding ρ+ σ2
ε+σ2

η

ρσ2
ε

and dividing by 2 yields the result.

Proof of Proposition 5.1. Under rational expectations, the optimal inflation forecast is such that

Fi [π] = Ei

[
(1− α)π∗ + αF [π]

]
.

It follows from the the equivalence result in Huo and Pedroni (2020), that the optimal forecast is given by

Fi [π] =
σ2
π

σ2
π + (1− α)

−1
σ2
ϵ

xi.
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Aggregating, we obtain

F [π] =
σ2
π

σ2
π + (1− α)

−1
σ2
ϵ

π∗.

Plugging this into the time-invariant inflation policy rule (5.1) completes the proof.

Proof of Proposition 5.2. To ease notation, let

ki ≡ Fi [π] , and K = F [π] .

Plugging (5.1) into the utility function of the agent results in

u (ki,K, π
∗) =− (ki − (1− α)π∗ − αK)

2 − χ ((1− α)π∗ + αK)

=−
[
(1− α) (ki − π∗)

2
+ α (ki −K)

2
]
− (1− α)χπ∗ + α (1− α) (K − π∗)

2 − αχK.

This is an inefficient economy, so we use Proposition B.3 to characterize the optimal forecasts. Let

λineff. ≡ 2λ, αineff. ≡ α, γineff. ≡ 0, χineff. ≡
1

2
(1− α)χ,

ψineff. ≡ −α (1− α) , ϕineff. ≡ 0, and φineff. ≡
1

2
αχ,

where parameters with a subscript “ineff.” correspond to the ones in the setup of Proposition B.3. It follows
that

w =
τµ

1− 2λ (1− α)
2
τµV (π −K)

, and r = 0,

where τµ ≡ σ2
µ/σ

2
π is the normalized amount of ambiguity. Moreover, the bias is given by

B = λ (1− α)χτµV (π) (1− S) + λαχτµ [V (π) (1− S)− V (π −K)] .

Using V (π) = σ2
π and V (π −K) = (1− S)2 σ2

π, we obtain the desired expressions for sensitivity S and bias
B. Finally, the implied inflation policy directly follows from equation (5.1), which completes the proof.

Proof of Proposition 5.3. Since the loss function is continuous in σ2
µ, it is sufficient to show that

dL
dσ2

µ

∣∣∣∣
σ2
µ=0

< 0.

Fist notice that

L =
ω

α

[
(1−R)

2
σ2
π + C2

]
⇒ dL

dσ2
µ

=
2ω

α

[
− (1−R)σ2

π

dR
dσ2

µ

+ C dC
dσ2

µ

]
.
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If σ2
µ = 0, it is optimal to set R < 1 and C = 0, so that it is sufficient to show that

dR
dσ2

µ

∣∣∣∣
σ2
µ=0

> 0,

or, equivalently,

dS
dσ2

µ

∣∣∣∣
σ2
µ=0

> 0,

since R = 1− α+ αS. Further, notice that sensitivity S depends on σ2
µ only through w and is monotonically

increasing in w, it is then sufficient to show that

dw

dσ2
µ

∣∣∣∣
σ2
µ=0

> 0.

This, in turn, follows from the fact that w = 0 if σ2
µ = 0, and w > 0 for any σ2

µ > 0.

Proof of Proposition 5.4. The optimal inflation forecast must satisfy

Fi [π] = (1− α)Fi [π
∗] + αFi

[
F [π]

]
.

With heterogeneous priors, the belief system of agent i is such that

Fi [π
∗] = Ei [π

∗] =

(
σ2
π

σ2
π + σ2

ϵ

)
xi, and

Fi [Fj [π
∗]] = Fi

[
σ2
π

σ2
π + σ2

ϵ

xj +
σ2
ϵ

σ2
π + σ2

ϵ

B
]
=

(
σ2
π

σ2
π + σ2

ϵ

)2

xi +

(
σ2
ϵ

σ2
π + σ2

ϵ

)
B.

It follows that

Fi

[
F [π∗]

]
=

(
σ2
π

σ2
π + σ2

ϵ

)2

xi +

(
σ2
ϵ

σ2
π + σ2

ϵ

)
B, and

Fi

[
Fj

[
F [π∗]

]]
= Fi

[(
σ2
π

σ2
π + σ2

ϵ

)2

xj +

(
σ2
π

σ2
π + σ2

ϵ

)(
σ2
ϵ

σ2
π + σ2

ϵ

)
B +

(
σ2
ϵ

σ2
π + σ2

ϵ

)
B

]
,

and, therefore,

Fi

[
F2

[π∗]
]
=

(
σ2
π

σ2
π + σ2

ϵ

)3

xi +

(
1∑

s=0

(
σ2
π

σ2
π + σ2

ϵ

)s
)(

σ2
ϵ

σ2
π + σ2

ϵ

)
B.
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Continuing to iterate forwards, we obtain that, for all k ≥ 1,

Fi

[
Fk

[π∗]
]
=

(
σ2
π

σ2
π + σ2

ϵ

)k (
σ2
π

σ2
π + σ2

ϵ

)
xi +

(
k−1∑
s=0

(
σ2
π

σ2
π + σ2

ϵ

)s
)(

σ2
ϵ

σ2
π + σ2

ϵ

)
B

=

(
σ2
π

σ2
π + σ2

ϵ

)k (
σ2
π

σ2
π + σ2

ϵ

)
xi +

(
1−

(
σ2
π

σ2
π + σ2

ϵ

)k
)

B.

Notice that the optimal forecast of agent i can be expressed as a weighted sum of higher-order beliefs,

Fi [π] = (1− α)Fi [π
∗] + (1− α)

∞∑
k=1

αkFi

[
Fk

[π∗]
]

= (1− α)

( ∞∑
k=0

αk

(
σ2
π

σ2
π + σ2

ϵ

)k
)(

σ2
π

σ2
π + σ2

ϵ

)
xi + (1− α)

∞∑
k=1

αk

(
1−

(
σ2
π

σ2
π + σ2

ϵ

)k
)

B

= SRE xi + α
(
1− SRE)B,

where SRE ≡ σ2
π

σ2
π+(1−α)−1σ2

ϵ
denotes the sensitivity under rational expectations.

From the inflation policy in equation (5.1), it follows that

R = 1− α+ αSRE = RRE, and C = α
(
α− αSRE)B = α

(
1−RRE)B.

Finally, the social loss function is given by

L =
ω

α

[
(1−R)

2
σ2
π + C2

]
,

which is increasing in B since C = α
(
1−RRE)B.
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D Uniqueness and Linearity of Optimal Strategies without Strategic Interactions

In this Appendix, we prove that in the absence of strategic interactions, the optimal strategy is unique and
linear in signals. It is worth noting that the uniqueness of the optimal strategy only requires concavity of the
utility function u(·) and the ϕ(·) function (Lemma D.1). Linearity, on the other hand, requires u (·) to be
quadratic, ϕ (·) to be of CAAA form, and the information structure to be Gaussian (Lemma D.2).

We base our analysis on the truncated economy outlined in the proof of Proposition 3.3, while shutting down
strategic interactions by suppressing the dependence of the utility function on the aggregate action K:

max
{k(xi)}

∫
µ

ϕ (Eµ [u (k(xi), θ)]) p(µ)dµ.

Agent i must choose an ex-ante strategy k(xi), a function of their entire history of private information, xi.

Lemma D.1. Without strategic interactions, there is a unique optimal strategy ki = g (xi).

Proof. To simplify notation, denote

W (f) =

∫
µ

ϕ (Eµ [u (f, θ)]) p (µ) dµ, and W̄ = max
f

W (f) .

Suppose there are at least two strategies g1 (xi) and g2 (xi) with g1 ̸= g2 both achieving the optimum, that is,
W (g1) = W (g2) = W̄. Consider an alternative strategy h = g1+g2

2 . It follows that

W (h) >

∫
µ

ϕ

(
Eµ

[
1

2
u (g1, θ) +

1

2
u (g2, θ)

])
p (µ) dµ

=

∫
µ

ϕ

(
1

2
Eµ [u (g1, θ)] +

1

2
Eµ [u (g2, θ)]

)
p (µ) dµ

>

∫
µ

(
1

2
ϕ (Eµ [u (g1, θ)]) +

1

2
ϕ (Eµ [u (g1, θ)])

)
p (µ) dµ

=
1

2
W (g1) +

1

2
W (g2) = W̄,

where the first and second inequalities use the concavity of u and ϕ, respectively. The condition W (h) > W̄
contradicts the assumption that g1 and g2 are both optimal strategies. As a result, it must be the case that
there exists a unique optimal strategy g.

Lemma D.2. If u (·) is quadratic, ϕ (·) takes the CAAA form, and the information structure is Gaussian,
the optimal strategy is unique and linear in signals, i.e., there exist unique h′ and h0 such that

ki = g (xi) = h′xi + h0.

Proof. Notice that the economy under consideration is a special case of our model in Section 3 in which there
are no strategic interactions, i.e., α = 0. Then, invoking Proposition 3.1, we know that a linear optimal
strategy exists. Combining this with the uniqueness result of Lemma D.1 completes the proof.
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E Robust Preferences: Derivations and Proofs

Lemma E.1. Taking the law of motion of Kt as given, individual i’s best response satisfies

kit = (1− α)Fit [ξt] + αFit [Kt] ,

where Fit [·] denotes agent i’s subjective expectation, such that for any random variable X,

Fit[X] ≡
∫
X p̃it(X)dX, with p̃it(X) ∝ exp (−ϖu(kit,Kt, ξt)) p(X | xti).

Proof of Lemma E.1. The first-order-condition for the minimization with respect to mit is given by

u (kit,Kt, ξt) +
1

ϖ
logmit +

1

ϖ
= 0.

Together with the fact that Eit [mit] = 1, it follows that

mit =
exp (−ϖu (kit,Kt, ξt))

Eit [exp (−ϖu (kit,Kt, ξt))]
.

Thus, problem (6.1) can be rewritten as the following problem with risk sensitivity:

max
kit

− 1

ϖ
log (Eit [exp (−ϖu (kit,Kt, ξt))]) .

The first-order-condition for this problem with respect to kit is given by

Eit

[
exp (−ϖu (kit,Kt, ξt))

∂u(kit,Kt,ξt)
∂kit

]
Eit [exp (−ϖu (kit,Kt, ξt))]

= 0.

Since

∂u(kit,Kt, ξt)

∂kit
= kit − (1− α) ξt − αKt,

it follows that

kit = (1− α)Eit

[
ξt

exp (−ϖu (kit,Kt, ξt))

Eit [exp (−ϖu (kit,Kt, ξt))]

]
+ αEit

[
Kt

exp (−ϖu (kit,Kt, ξt))

Eit [exp (−ϖu (kit,Kt, ξt))]

]
.

Letting exp(−ϖu(kit,Kt,ξt))
Eit[exp(−ϖu(kit,Kt,ξt))]

be the Radon-Nikodym derivative completes the proof.

Proof of Proposition 6.1. Consider the same truncated version of the model used in the proof of Proposi-
tion 3.3. From Lemma E.1 we have that the optimal strategy then satisfies that

ki = (1− α)F [θ | xi] + αF [K | xi] , (E.1)
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with the distorted posterior given by

p̃ (η|xi) ∝ exp (−ϖu (ki,K, θ)) p (η | xi) .

We proceed with a guess-and-verify strategy. First we guess that

ki = h′Bνi + h0.

Substituting this into equation (E.1), it follows that

ki = ((1− α)AK′ + αh′BK′)F [η | Bνi] + αh0.

Thus, we need to determine the subjective conditional expectation F [η | Bνi]. We proceed to characterize the
distorted posterior p̃ (η | Bνi) by the following three steps:

1. First, the Bayesian posterior p (η | Bνi) is such that

p (η | Bνi) ∝ exp

(
−1

2

(
η − µη|Bνi

)′
Σ−1

η|Bνi

(
η − µη|Bνi

))
,

with the conditional mean and variance of given by

µη|Bνi
= KΩB′ (BΩB′)

−1
Bνi, and Ση|Bνi

= KΩK′ −KΩB′ (BΩB′)
−1
BΩK′.

2. Second, notice that

u (k,K, θ) = − 1

2

[
(1− α) (h′Bνi + h0 −AK′η)

2
+ α (h′Bνi − h′BK′η)

2
]
− χAK′η − 1

2
γη′KA′AK′η

= constant − 1

2
γη′KA′AK′η − 1

2
[(1− α) η′KA′AK′η + αη′KB′hh′BK′η]

+
1

2
[(1− α) (h0 + ν′iB

′h)A+ αν′iB
′hh′B − χA]K′η

+ η′K1

2
[(1− α)A′ (h0 + h′Bνi) + αB′hh′Bνi − χA′] ,

with the constant independent of η.

3. Finally, putting these results together, the distorted posterior must be such that

p̃ (η | Bνi) ∝ exp

(
−1

2
η′Σ̃−1

η|Bνi
η +

1

2
µ̃′
η|Bνi

Σ̃−1
η|Bνi

η +
1

2
η′Σ̃−1

η|Bνi
µ̃η|Bνi

)
where the distorted posterior variance and mean are given by

Σ̃−1
η|Bνi

≡ Σ−1
η|Bνi

+Q and µ̃η|Bνi
≡ Σ̃η|Bνi

(
Σ−1

η|Bνi
µη|Bνi

+RBνi

)
+ πµ,
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with the matrices Q and R and the vector πµ given by

Q ≡ −ϖγKA′AK′ −ϖ [(1− α)KA′AK′ + αKB′hh′BK′] , (E.2)

R ≡ −ϖK [(1− α)A′ + αB′h]h′, (E.3)

πµ ≡ −ϖ
(
Σ−1

η|Bνi
+Q

)−1

K [(1− α)A′h0 − χA′] . (E.4)

The distorted expectation under robust preferences can, then, be written as

Ẽ [η | Bνi] = µ̃η|Bνi
= MBνi + πµ,

with the matrix M given by

M ≡
(
Σ−1

η|Bνi
+Q

)−1 (
Σ−1

η|Bνi
KΩB′ (BΩB′)

−1
+R

)
. (E.5)

Thus, we that that
ki = ((1− α)AK′ + αh′BK′) (MBνi + πµ) + αh0.

and for the initial guess to be correct the following fixed-point conditions must be satisfied:

h′ = [(1− α)A+ αh′B]K′M, (E.6)

h0 = [(1− α)A+ αh′B]K′πµ + αh0. (E.7)

In what follows, we first characterize the responsiveness to signals h that solves equation (E.6) and then
characterize the bias h0 that solves equation (E.7).

Characterization of the responsiveness, h. We start by rewriting the equation for the matrix M. Sub-
stituting h′ from equation (E.6) into equation (E.3), we obtain

R = −ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′M

Plugging this expression for R into the definition of M, equation (E.5), it follows that(
Σ−1

η|Bνi
+Q

)
M =

(
Σ−1

η|Bνi
KΩB′ (BΩB′)

−1 −ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′M
)
.

Solving for M we get

M =
(
Iu +Ση|Bνi

Q̃
)−1

KΩB′ (BΩB′)
−1
,

where the Iu is the identity matrix of dimension u and the matrix Q̃ is given by

Q̃ ≡ Q+ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′ (E.8)

= −ϖγKA′AK′ −ϖα (1− α)K (B′h−A′) (h′B −A)K′.
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To ease notation, we define matrices

Z1 ≡ −ϖγKA′ −ϖα (1− α)K (A′ −B′h) , and Z2 ≡ −ϖα (1− α)K (B′h−A′) ,

so that
Q̃ = Z1AK′ + Z2h

′BK′.

The fixed-point condition (E.6) can, then, be rewritten as

h′ = [(1− α)A+ αh′B]K′
(
Iu +Ση|Bνi

Q̃
)−1

ΩηKB′ (BΩB′)
−1
,

where we used the fact that KΩ = ΩηK. Using the Woodbury matrix identity, we obtain(
Iu +Ση|Bνi

Q̃
)−1

Ωη = Ωη −
(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Q̃Ωη,

so, we can further rewrite the fixed-point condition as

h′ = [(1− α)A+ αh′B]K′
(
Ωη −

(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Q̃Ωη

)
KB′ (BΩB′)

−1

= [(1− α)A+ αh′B]K′
(
Ωη −

(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
(Z1AK′ + Z2h

′BK′)Ωη

)
KB′ (BΩB′)

−1

=(1− α+ κ1)AΛΩB
′ + (α− κ2)h

′BΛΩB′,

where Λ = K′K and the endogenous scalars κ1 and κ2 are given by

κ1 ≡ − [(1− α)A+ αh′B]K′
(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Z1,

κ2 ≡ [(1− α)A+ αh′B]K′
(
Iu +Ση|Bνi

Q̃
)−1

Ση|Bνi
Z2.

Solving for h′ we obtain
h′ =

1− α+ κ1

1− α+ κ2
AΛΩ̂B′

(
BΩ̂B′

)−1

, (E.9)

where the transformed variance-covariance matrix Ω̂ is given by

Ω̂ ≡ 1− α+ κ2

1− α
ΛΩ+

1

1− α
(Im − Λ)Ω, (E.10)

with Im denoting the identity matrix of dimension m.

In what follows, we provide expressions for the two endogenous scalars (κ1,κ2) such that we can take the
limit as T → ∞ and obtain the formulas in Proposition 6.1. For this purpose, it is useful to define

X ≡ [(1− α)A+ αh′B]K′
(
Σ−1

η|Bνi
+ Q̃

)−1

.
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Notice that (κ1,κ2) can then be written as

κ1 = −XZ1 = ϖγXKA′ + κ2, and κ2 = −XZ2 = ϖα (1− α)XK (A′ −B′h) .

Therefore, it follows that

X = [(1− α)A+ αh′B]K′
(
Ση|Bνi

−
(
Σ−1

η|Bνi
+ Q̃

)−1

Q̃Ση|Bνi

)
= [(1− α)A+ αh′B]K′Ση|Bνi

−XQ̃Ση|Bνi

= [(1− α)A+ αh′B]K′Ση|Bνi
−X(Z1AK′ + Z2h

′BK′)Ση|Bνi

= [(1− α)A+ αh′B]K′Ση|Bνi
+ (κ1AK′ − κ2h

′BK′)Ση|Bνi

= (1− α+ κ1)AK′Ση|Bνi
+ (α− κ2)h

′BK′Ση|Bνi
.

Thus, since κ1 − κ2 = ϖγXKA′, we have that,

κ1 − κ2 = ϖγ (1− α+ κ1)AK′Ση|Bνi
KA′ +ϖγ (α− κ2)h

′BK′Ση|Bνi
KA′. (E.11)

Next, notice that

X = XΣ−1
η|Bνi

Ση|Bνi
= XΣ−1

η|Bνi
KΩK′ −XΣ−1

η|Bνi
KΩB′ (BΩB′)

−1
BΩK′ = XΣ−1

η|Bνi
KΩK′ − h′BΩK′,

where the second equality uses the definition of Ση|Bνi
and the last equality uses the fact that

h′ = XΣ−1
η|Bνi

KΩB′ (BΩB′)
−1
.

Rearranging terms and right-multiplying (KΩK′)
−1 KΩB′ to both sides of the equation, we obtain

XΣ−1
η|Bνi

KΩB′ = X(KΩK′)
−1 KΩB′ + h′BΩK′ (KΩK′)

−1 KΩB′ = XKB′ + h′BΛΩB′.

Further, since XΣ−1
η|Bνi

KΩB′ = h′BΩB′, it follows that

XKB′h = h′B (Im − Λ)ΩB′h.

Hence, we have that

κ2 = ϖα (1− α)XKA′ −ϖα (1− α)XKB′h (E.12)

=
α (1− α)

γ
(κ1 − κ2)−ϖα (1− α)h′B (Im − Λ)ΩB′h, (E.13)

where we use the fact that ϖγXKA′ = κ1 − κ2.

Given the above results, we are left with taking the limit as T → ∞ of the truncated problem. In particular,
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we have that

lim
T→∞

AΛΩ̂B′
(
BΩ̂B′

)−1

= p (L;w,α) lim
T→∞

AK′Ση|Bνi
KA′ = Vit (ξt)

lim
T→∞

h′BK′Ση|Bνi
KA′ = COVit (Kt, ξt) lim

T→∞
h′B (Im − Λ)ΩB′h = DISP (kit)

which, together with equations (E.9), (E.10), (E.11), and (E.13), completes the characterization of the respon-
siveness to signals.

Characterization of the bias, h0. From the fixed-point condition (E.7) and the definition of πµ in equa-
tion (E.4), it follows that

(1− α)h0 = ϖ [(1− α)A+ αh′B]K′
(
Σ−1

η|Bνi
+Q

)−1

K [χA′ − (1− α)A′h0] ,

which can be solved for h0 implying
h0 =

χϖY

(1− α) (1 +ϖY)
,

with Y given by
Y ≡ [(1− α)A+ αh′B]K′

(
Σ−1

η|Bνi
+Q

)−1

KA′.

Using the definition of Q̃ in equation (E.8) and the Woodbury matrix identity, it follows that(
Σ−1

η|Bνi
+Q

)−1

=
(
Σ−1

η|Bνi
+ Q̃−ϖK ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′

)−1

=
(
Σ−1

η|Bνi
+ Q̃

)−1

+

ϖ
(
Σ−1

η|Bνi
+ Q̃

)−1

K ((1− α)A′ + αB′h) ((1− α)A+ αh′B)K′
(
Σ−1

η|Bνi
+ Q̃

)−1

1−ϖ ((1− α)A+ αh′B)K′
(
Σ−1

η|Bνi
+ Q̃

)−1

K ((1− α)A′ + αB′h)

=
(
Σ−1

η|Bνi
+ Q̃

)−1

+
ϖX′X

1−ϖXK ((1− α)A′ + αB′h)
.

Therefore,

Y = XKA′ +
ϖ [(1− α)A+ αh′B]K′X′XKA′

1−ϖXK ((1− α)A′ + αB′h)

=
XKA′

1−ϖXK ((1− α)A′ + αB′h)

=

κ1−κ2

ϖγ

1−
(

1−α
γ

)
(κ1 − κ2)−ϖαh′B (Im − Λ)ΩB′h

,

where the last equality uses the fact that

κ1 − κ2 = ϖγXKA′, and XKB′h = h′B (Im − Λ)ΩB′h.
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Therefore, we have that

h0 =
χ(κ1 − κ2)

(1− α) (γ + α (κ1 − κ2)− γϖαh′B (Im − Λ)ΩB′h)
.

Finally, taking the limit as T → ∞ leads to

B = lim
T→∞

h0 =
χ(κ1 − κ2)

(1− α) (γ + α (κ1 − κ2)− γϖαDISP (kit))
.

Proof of Corollary 6.1. Observe that, by using (3.16), the expression of w under smooth model (3.15) can
be transformed into

w =

[
1

τµ
− λ (1− α)

(
V (ξt −Kt) + r

1 + w

w
(1− S)V (ξt)

)]−1

(E.14)

Take any pair (w, r) and the associated sensitivity S that would arise from robust preferences. We may solve(
λ, σ2

µ

)
from (3.16) and (E.14). Note that the first condition w ≥ 0, r ≥ 0,S ≤ 1 ensures that Assumption 2

can be satisfied and the second condition(1 − S)
(

γw
(1+w)r − (1−α)(1+w)r

w

)
+ γ > (1 − α)V(ξt−Kt)

V(ξt) ensures that
the resulted τµ > 0.
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F Value of Information

In this appendix, we demonstrate that the value of information increases with the amount of ambiguity. To
start with, as a simplification, we restrict our attention to the situation where the idiosyncratic noises share
a common variance σ2

ϵ . Specifically, we investigate the sign of the following cross-derivative for agent i:

D ≡ −
d2V

(
σ2
ϵ ; ḡ

(
xt−i

))
dσ2

ϵdτµ
,

where
V
(
σ2
ϵ ; ḡ

(
xt−i

))
≡ ϕ−1

(∫
µt

ϕ
(
Eµt

[u (kit,Kt, ξt)]
)
p
(
µt
)
dµt

)
,

and ḡ
(
xt−i

)
denotes the strategies taken by all other agents. The derivative −dV

(
σ2
ϵ ; ḡ

(
xt−i

))
/dσ2

ϵ captures
the effect on the agent’s objective function of an increase in signal precision, thereby quantifying the value of
extra information. As a result, a positive sign of the cross-derivative D reflects that a higher level of ambiguity
increases the value of information.

We allow D to depend on the strategies of the other agents ḡ
(
xt−i

)
. This approach focuses our analysis on

the value of information from the perspective of agent i, without imposing a symmetric equilibrium a priori.
As a result, this notion of the value of information is ready to be incorporated into a rational inattention
framework with some information acquisition cost function. This way of measuring the value of information
is also consistent with our framework of persistent learning, where all private information shares the same
precision so that a marginal change in σ2

ϵ changes the precision of all private information. In a generic
environment where the precision of different sources of private information can differ substantially, our notion
of the value of information can be equivalently understood as increasing the precision of all private information
by the same amount.

In what follows, through the lens of a set of lemmas, we demonstrate that D > 0, i.e., the value of information
increases with the amount of ambiguity. We begin with Lemma F.1, which analytically characterizes the value
of information.

Lemma F.1. If ϕ(·) takes the CAAA form, i.e., ϕ(x) = − 1
λ exp(−λx), the value of information equals the

equilibrium cross-sectional dispersion of actions:

−
dV(σ2

ϵ ; ḡ(x
t
−i))

dσ2
ϵ

=
1

2σ2
ϵ

E[(kit −Kt)
2].

Proof. We start the proof with the truncated economy as in the proof of Proposition 3.3. As a result, the
strategies of individual agent i and of the other agents are respectively given by

ki = h′Bνi + h0, and K = h̄′BΛνi + h̄0.
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When ϕ(·) takes the CAAA form, the ex-ante value of agent i is such that

V(σ2
ϵ ; h̄, h0) ≡ − 1

λ
ln

(∫
µ

exp (−λEµ[u(ki,K, θ)]) p(µ)dµ

)
s.t. ki = h′Bνi + h0 and K = h̄′BΛνi + h0.

Taking derivative with respect to σ2
ϵ leads to

dV(σ2
ϵ ; h̄, h0)

dσ2
ϵ

=

∫
µ
exp (−λEµ[u(ki,K, θ)])

(
∂Eµ[u(ki,K,θ)]

∂h
dh
dσ2

ϵ
+ ∂Eµ[u(ki,K,θ)]

∂h0

dh0

dσ2
ϵ
+ ∂Eµ[u(ki,K,θ)]

∂σ2
ϵ

)
p(µ)dµ∫

µ
exp (−λEµ[u(ki,K, θ)]) p(µ)dµ

=

∫
µ

∂Eµ[u(ki,K, θ)]

∂σ2
ϵ

p̂(µ)dµ+
dh

dσ2
ϵ

∫
µ

∂Eµ[u(ki,K, θ)]

∂h
p̂(µ)dµ+

dh0
dσ2

ϵ

∫
µ

∂Eµ[u(ki,K, θ)]

∂h0
p̂(µ)dµ,

where p̂(µ) is the (ex-ante) distorted subjective belief given by

p̂(µ) ∝ exp (−λEµ[u(ki,K, θ)]) p(µ).

Note that the first-order conditions that pin down the optimal sensitivity h and bias h0 are such that∫
µ

∂Eµ[u(ki,K, θ)]

∂h
p̂(µ)dµ =

∫
µ

∂Eµ[u(ki,K, θ)]

∂h0
p̂(µ)dµ = 0.

Denote K and G by
K ≡ [Iu, 0u,m−u] , and G ≡ [0m−u,u, Im−u] .

It can then be shown that

Eµ[u(ki,K, θ)] =− 1

2
(1− α)Eµ[(h′B(K′η + G′ϵi) + h0 − a′η)2]

− 1

2
αEµ[(h′B(K′η + G′ϵi) + h0 − h̄′BK′η − h̄0)

2]− Eµ[χa′η +
1

2
γa′ηη′a]

=− 1

2
h′B(I − Λ)B′hσ2

ϵ + Z(µ, σ2
η, h, h0, h̄, h̄0),

where Λ = K′K, and Z(µ, σ2
η, h, h0, h̄, h̄0) are independent of σϵ. Therefore, we have

−dV(σ2
ϵ ; h̄, h0)

dσ2
ϵ

=−
∫
µ

∂Eµ[u(ki,K, θ)]

∂σ2
ϵ

p̂(µ)dµ =
1

2
h′B(I − Λ)B′h =

1

2σ2
ϵ

h′B(I − Λ)ΩB′h.

Taking the limit as T → ∞ of the truncated problem yields

lim
T→+∞

−dV(σ2
ϵ ; h̄, h0)

dσ2
ϵ

= −
dV(σ2

ϵ ; ḡ(x
t
−i))

dσ2
ϵ

, and lim
T→+∞

h′B(I − Λ)ΩB′h = E[(kit −Kt)
2].

Thus, the value of information equals the equilibrium cross-sectional dispersion of actions.

Does higher ambiguity increase the value of information? Providing an answer to this question is equivalent
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to analyzing whether the cross-sectional dispersion of actions increases with the amount of ambiguity τµ. Our
equivalence result suggests that τµ shapes cross-sectional dispersion by affecting the two endogenous scalars
w and r. In what follows, we first characterize how w and r affect the cross-sectional dispersion of actions
(Lemma F.2). Intuitively, increases in either w or r should increase the cross-sectional dispersion, given that
both higher w and r contribute to more overreactions. Lemma F.2 confirms this intuition.

Lemma F.2. The cross-sectional dispersion of actions is increasing in both w and r:

∂E
[
(kit −Kt)

2
]

∂w
> 0, and

∂E
[
(kit −Kt)

2
]

∂r
> 0.

Proof. Again, we start the proof with the truncated economy, in which h(w, r)′B(I − Λ)ΩB′h(w, r) denotes
cross-sectional dispersion. Further, denote ĥ′(w) as the truncated version of p(L;w,α), namely the forecasting
rule of the (w,α)-modified signal process in Section 3.3. Then, we have that

h′(w, r) = (1 + r)ĥ′(w),

which implies that

h(w, r)′B(I − Λ)ΩB′h(w, r) = (1 + r)2ĥ(w)′B(I − Λ)ΩB′ĥ(w).

It is then straightforward to see that

∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂r
> 0.

In what follows, we proceed to prove that ĥ(w)′B(I−Λ)ΩB′ĥ(w) is increasing in w. Utilizing our equivalence
results, it can be shown that

ĥ′(w) =A
(
(1 + w)ΛΩ + (1− α)−1(I − Λ)Ω

)
B′ (B ((1 + w)ΛΩ + (1− α)−1(I − Λ)Ω

)
B′)−1

=A
(
ΛΩ+ (1 + w)−1(1− α)−1(I − Λ)Ω

)
B′ (B (ΛΩ+ (1 + w)−1(1− α)−1(I − Λ)Ω

)
B′)−1

=AΩB′ (B (ΛΩ+ (1 + w)−1(I − Λ)Ω
)
B′)−1

=AΩB′ (B (ΛΩα + (1 + w)−1(I − Λ)Ωα

)
B′)−1

,

where Ωα ≡ ΛΩ+ (1− α)−1(I − Λ)Ω. As a result, taking the derivative with respect to w leads to

dĥ′(w)

dw
=(1 + w)

−2
ĥ′(w)B(I − Λ)ΩαB

′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

.
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Therefore, we have that

(1 + w)2
dĥ(w)′B(I − Λ)ΩB′ĥ(w)

dw

= ĥ′(w)B(I − Λ)ΩαB
′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B

′)−1
B(I − Λ)ΩB′ĥ(w)

+ ĥ(w)′B(I − Λ)ΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

B(I − Λ)ΩαB
′ĥ(w)

= (1− α)−1ĥ′(w)B(I − Λ)ΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

B(I − Λ)ΩB′ĥ(w)

+ (1− α)−1ĥ(w)′B(I − Λ)ΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

B(I − Λ)ΩB′ĥ(w)

= 2(1− α)−1ϖΠ−1ϖ′,

where ϖ ≡ ĥ′(w)B(I − Λ)ΩB′ and Π ≡ B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′. Notice that the matrix Π−1 is

symmetric and positive semi-definite, hence so is Π. We then conclude that

dĥ(w)′B(I − Λ)ΩB′ĥ(w)

dw
> 0 ⇔ ∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂w
> 0.

Finally, taking the limit as T → ∞ of the truncated problem results in

dE[(kit −Kt)
2]

dr
= lim

T→∞

∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂r
> 0,

and

dE[(kit −Kt)
2]

dw
= lim

T→∞

∂h(w, r)′B(I − Λ)ΩB′h(w, r)

∂w
> 0.

In the last step, we analyze how changes in τµ affect w and r directly. To enjoy an analytical result, we
abstract out r by setting γ = 0.

Lemma F.3. The endogenous scaler w is increasing in τµ if γ = 0.

Proof. When γ = 0, it can be shown that

w =
1

1
τµ

− λ(1− α)(A− h′B)ΛΩ(A− h′B)′
. (F.1)

Similar to the proof of Lemma F.2 and using the same notation, it can be shown that

h = AΩB′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

,

which implies that

dh

dw
=(1 + w)−2h′B(I − Λ)ΩαB

′ (B(ΛΩα + (1 + w)−1(I − Λ)Ωα)B
′)−1

.
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Therefore, we can show that

d(A− h′B)ΛΩ(A− h′B)′

dw

= − 2(1 + w)−1(A− h′B)ΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h

= 2(1 + w)−1(h′BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h− h′B(I − Λ)Ω̂B′h)

= 2(1 + w)−1h′(BΛΩ̂B′ −BΛΩ̂B′
(
BΩ̂B′

)−1

BΛΩ̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

− I)B(I − Λ)Ω̂B′h

= − 2(1 + w)−1(h′B(I − Λ)Ω̂B′)
(
BΩ̂B′

)−1

(B(I − Λ)Ω̂B′h) < 0,

where we denote Ω̂ = ΛΩα + (1 + w)−1(I − Λ)Ωα. It can be further shown that

d(A− h′B)ΛΩ(A− h′B)′

dw
= 2(1 + w)−1(h′BΛΩ̂B′

(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h

= 2(1 + w)−1(h′BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′h− h′B(I − Λ)Ω̂B′h)

= 2(1 + w)−1h′(BΛΩ̂B′ −BΛΩ̂B′
(
BΩ̂B′

)−1

BΛΩ̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

B(I − Λ)Ω̂B′ −B(I − Λ)Ω̂B′)h

= 2(1 + w)−1h′(BΛΩ̂B′
(
BΩ̂B′

)−1

− I)B(I − Λ)Ω̂B′h

= − 2(1 + w)−1(h′B(I − Λ)Ω̂B′)
(
BΩ̂B′

)−1

(B(I − Λ)Ω̂B′h) < 0.

Denote the right-hand side of equation (F.1) by RHS(τµ, w) and the left-hand side by LHS(w). It is then
straightforward to demonstrate that

dLHS(w)
dw

> 0,
∂RHS(τµ, w)

∂w
< 0, and ∂RHS(τµ, w)

∂τµ
< 0,

which jointly proves that

dw

dτµ
> 0.

Lemma F.1, Lemma F.3, and Lemma F.2 combined establish the desired result, that the value of information
increases with the amount of ambiguity if γ = 0:

D > 0 if γ = 0.
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In the general case where γ > 0, proving that D > 0 turns out to be challenging. However, extensive numerical
exercises suggest that the value of information continues to increase with the level of ambiguity in this more
complex scenario. Intuitively, with γ > 0, there is an additional channel of overreaction, namely, the scalar
r > 0, which leads to a higher utilization of information. It is the intricate interaction between w and r,
however, that complicates the analytical analysis.
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G Ambiguity about Variance

In this section, we explore the cases in which there is ambiguity about the variance of the fundamental and
about the variance of the noise, respectively.

G.1 Ambiguity about the variance of the fundamental

We start with the case that agents perceive ambiguity about the variance of the fundamental. Specifically, we
assume that the fundamental ξ follows a normal distribution with mean 0 and variance σ2

ξ,∗: ξ ∼ N
(
0, σ2

ξ,∗

)
.

Agents exhibit ambiguity regarding the true variance of the fundamental, σ2
ξ,∗. We let Γξ be the the range

of possible values for the variance of the fundamental, σ2
ξ . Analysts believe that σ2

ξ ∈ Γξ and have some
prior belief about Γξ with density distribution given by p

(
σ2
ξ

)
. To ensure that strategies based on Bayesian

inference and ambiguity neutrality coincide, we impose the following assumption on the agents’ prior belief:

Assumption 3. The prior belief of the agent is such that∫
Γξ

σ2
ξ p
(
σ2
ξ

)
dσ2

ξ = σ2
ξ,∗ .

Similar to the setup of ambiguity about the mean of the fundamental, each agent receives a private signal

xi = ξ + εi, with εi ∼ N
(
0, σ2

ϵ

)
.

Agents are ambiguity-averse and select a strategy g(xi) to minimize the following objective:

L(g) = ϕ−1

(∫
Γξ

ϕ

(
Eσ2

ξ
[
(g(xi)− ξ)2 − χξ

])
p(σ2

ξ )dσ
2
ξ

)
,

where ϕ (x) = 1
λ exp (λx) takes the CAAA form with λ representing the degree of ambiguity aversion. Finally,

we restrict our analysis to linear strategies such that

g (xi) = sxi + b, (G.1)

which facilitates a direct comparison with our baseline setup, where ambiguity pertains to the mean of the
fundamental.

The following proposition suggests that ambiguity has a more limited effect, leading to an optimal linear
strategy that exhibits higher sensitivity compared to the rational RE benchmark, but no bias.

Proposition G.1. When agents are ambiguity-averse, λ > 0, the optimal linear strategy exhibits higher
sensitivity than the RE benchmark and features no bias:

s∗ > sRE ≡
σ2
ξ,∗

σ2
ξ,∗ + σ2

ϵ

, and b∗ = 0.
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Proof. Given the restriction to linear strategies, the objective function of the agents can be written as a
function of the sensitivity, s, and bias, b, as follows

L (s, b) =
1

λ
ln

(∫
Γξ

exp
(
λ
(
(s− 1)

2
σ2
ξ + s2σ2

ϵ

))
p
(
σ2
ξ

)
dσ2

ξ

)
+

1

2
b2.

The zero-bias result is straight-forward: the FOC with respect to bias b is such that

∂L (s, b)

∂b
= b = 0.

To characterize the optimal of sensitivity, s, we consider the corresponding FOC,

∂L (s, b)

∂s
=

∫
Γξ

exp
(
λ
(
(s− 1)

2
σ2
ξ + s2σ2

ϵ

)) [
(s− 1)σ2

ξ + sσ2
ε

]
p
(
σ2
ξ

)
dσ2

ξ∫
Γξ

exp
(
λ
(
(s− 1)

2
σ2
ξ + s2σ2

ϵ

))
p
(
σ2
ξ

)
dσ2

ξ

= 0,

which is equivalent to
s σ2

ε = (1− s)

∫
Γξ

σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ ,

where the distorted belief p̂(σ2
ξ ) is such that

p̂ (τξ) ∝ exp
(
λ (s− 1)

2
σ2
ξ

)
p
(
σ2
ξ

)
.

Notice that, relative to the agents’ prior p(σ2
ξ ), the distorted belief p̂(σ2

ξ ) puts higher weights on the larger σ2
ξ

in Γξ: p̂(σ2
ξ ) first-order stochastically dominates p(σ2

ξ ). It follows that∫
Γξ

σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ ≥
∫
Γξ

σ2
ξ p
(
σ2
ξ

)
dσ2

ξ = σ2
ξ,∗ ,

and, therefore,

s∗ =

∫
Γξ
σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ∫
Γξ
σ2
ξ p̂
(
σ2
ξ

)
dσ2

ξ + σ2
ϵ

>
σ2
ξ,∗

σ2
ξ,∗ + σ2

ϵ

= sRE.

G.2 Ambiguity about the variance of signal noise

We proceed to analyze the effect of ambiguity about the variance of the noise instead. Similar to the setup of
Section G.1, we assume that the fundamental ξ follows a normal distribution with mean 0 and variance σ2

ξ ,
ξ ∼ N

(
0, σ2

ξ

)
. Moreover, each agent receives a private signal

xi = ξ + εi, with εi ∼ N
(
0, σ2

ϵ,∗
)
.
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Agents face ambiguity regarding the true variance of the noise, denoted as σ2
ϵ,∗. We let Γϵ represent the range

of possible values for this variance. Agents maintain a belief that σ2
ϵ lies within Γϵ and hold a prior distribution

over this range, represented by p(σ2
ϵ ). To ensure that strategies based on Bayesian inference and ambiguity

neutrality coincide, we impose the following assumption on the agents’ prior belief:

Assumption 4. The prior belief of the agent is such that∫
Γϵ

σ2
ϵ p(σ

2
ϵ )dσ

2
ϵ = σ2

ϵ,∗ .

Agents are ambiguity averse and select a strategy g(xi) to minimize the following objective:

L(g) = ϕ−1

(∫
Γϵ

ϕ

(
Eσ2

ϵ [(g(xi)− ξ)2 − χξ]

)
p(σ2

ϵ )dσ
2
ϵ

)
,

where ϕ(x) = 1
λ exp(λx) takes the CAAA form with λ representing the degree of ambiguity aversion. Finally,

we restrict our analysis to linear strategies as in equation (G.1).

The following proposition states that ambiguity has not only a more limited effect but an opposite one on
sensitivity when ambiguity is on the variance of noise: the optimal linear strategy exhibits lower sensitivity
compared to the rational RE benchmark, while featuring no bias.

Proposition G.2. When agents are ambiguity averse, λ > 0, the optimal linear strategy exhibits higher
sensitivity than the RE benchmark and features no bias:

s∗ < sRE ≡
σ2
ξ

σ2
ξ + σ2

ϵ∗
, and b∗ = 0.

Proof. Given the restriction to linear strategies, the objective function of the agents can be written as a
function of the sensitivity, s, and bias, b, as follows:

L(s, b) = 1

λ
ln

(∫
Γϵ

exp
(
λ
(
(s− 1)2σ2

ξ + s2σ2
ϵ

))
p(σ2

ϵ )dσ
2
ϵ

)
+

1

2
b2.

The zero-bias result is straightforward: the first-order condition with respect to bias b is such that

∂L(s, b)
∂b

= b = 0.

To characterize the optimal sensitivity, s, we consider the corresponding first-order condition,

∂L(s, b)
∂s

=

∫
Γϵ

exp
(
λ
(
(s− 1)2σ2

ξ + s2σ2
ϵ

)) [
(s− 1)σ2

ξ + sσ2
ε

]
p(σ2

ϵ )dσ
2
ϵ∫

Γϵ
exp

(
λ
(
(s− 1)2σ2

ξ + s2σ2
ϵ

))
p(σ2

ϵ )dσ
2
ϵ

= 0,

which is equivalent to
s

∫
Γϵ

σ2
ε p̂(σ

2
ϵ )dσ

2
ϵ = (1− s)σ2

ξ ,
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where the distorted belief p̂(σ2
ϵ ) is such that

p̂(τϵ) ∝ exp
(
λs2σ2

ϵ

)
p(σ2

ϵ ).

Notice that, relative to the agents’ prior p(σ2
ϵ ), the distorted belief p̂(σ2

ϵ ) assigns higher weights to larger σ2
ϵ

in Γϵ: p̂(σ2
ϵ ) first-order stochastically dominates p(σ2

ϵ ). It follows that∫
Γϵ

σ2
ϵ p̂(σ

2
ϵ )dσ

2
ϵ ≥

∫
Γϵ

σ2
ϵ p(σ

2
ϵ )dσ

2
ϵ = σ2

ϵ,∗ ,

and, therefore,

s∗ =
σ2
ξ

σ2
ξ +

∫
Γϵ
σ2
ϵ p̂(σ

2
ϵ )dσ

2
ϵ

<
σ2
ξ

σ2
ξ + σ2

ϵ,∗
= sRE.
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H Evidence on Inflation Expectations by Income Group

H.1 Forecast error bias and persistence

We investigate the joint behaviors of bias and persistence in forecast errors using both the Michigan Survey of
Consumers (MSC) and the Survey of Consumer Expectations (SCE). We examine two regression equations:

FEg,t =

N∑
g=1

βgIg + ωg,t,

FEg,t =

N∑
g=1

βgIg +
N∑

g=1

αgFEg,t−1 + ωg,t,

where FEg,t represents the average forecast errors for group g at year-quarter t and Ig is the group dummy.
For the MSC dataset, we divide individuals into N = 7 income groups, while for the SCE dataset, we divide
individuals into N = 5 income groups. Table H.1 provides the results of our analysis. We use the poorest
group (Group 1) as the reference group when reporting the results. The overall patterns of bias and persistence
are similar in both the MSC and SCE datasets: as the income level increases, the amount of bias decreases,
while the persistence of forecast errors increases. Similar to Figure 4.1 that displays the empirical patterns in
MSC, Figure H.1 plot the point estimates of the biases and the persistence across different income groups in
SCE.

Figure H.1: Bias and Persistence of Forecast Error in the Survey Data (NYSCE)
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(B) Persistence of forecast error

Note: This figure reports bias (Panel A) and persistence (Panel B) of households’ inflation forecasts in the cross-
section of the income distribution. Bias and persistence of each income percentile are calculated by the mean and serial
correlation of forecast errors of households’ inflation expectations for the next 12 months. Data are obtained from the
Survey of Consumer Expectations, NY Fed between 2013:II and 2022:II.

To address the concern that bias may be influenced by other observed individual characteristics, such as age
and resident state, we introduce the following empirical specification at the individual level for both the MSC
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Table H.1: Bias and Persistence of Forecast Errors: MSC and SCE

MSC SCE

Bias Persistence Bias Persistence

Constant −2.297∗∗∗ −1.055∗∗∗ −6.389∗∗∗ −2.250∗∗∗
(0.072) (0.0.081) (0.162) (0.208)

Group 2 0.235∗∗∗ 0.367∗∗ 2.500∗∗∗ 0.865∗∗
(0.060) (0.085) (0.108) (0.153)

Group 3 0.766∗∗∗ 0.565∗∗∗ 3.504∗∗∗ 1.722∗∗∗
(0.053) (0.053) (0.143) (0.140)

Group 4 1.103∗∗∗ 0.713∗∗∗ 4.750∗∗∗ 2.090∗∗∗
(0.057) (0.032) (0.140) (0.063)

Group 5 1.258∗∗∗ 0.810∗∗∗ 5.541∗∗∗ 2.194∗∗∗
(0.054) (0.025) (0.163) (0.109)

Group 6 1.535∗∗∗ 0.876∗∗∗
(0.051) (0.030)

Group 7 1.924∗∗∗ 0.959∗∗∗
(0.044) (0.055)

FEt−1 0.537∗∗∗ 0.651∗∗∗
(0.044) (0.031)

FEt−1× Group 2 0.126∗∗∗ -0.001
(0.041) (0.068)

FEt−1× Group 3 0.143∗∗∗ 0.164
(0.039) (0.082)

FEt−1× Group 4 0.171∗∗∗ 0.227∗∗∗
(0.023) (0.050)

FEt−1× Group 5 0.217∗∗∗ 0.243∗∗
(0.040) (0.054)

FEt−1× Group 6 0.219∗∗∗
(0.041)

FEt−1× Group 7 0.192∗∗∗
(0.042)

Obs. 952 945 180 175
* p<0.1, ** p<0.05, *** p<0.001.
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and the SCE:

FEi,t =

N∑
g=1

βgIi,g,t + γ′Xi,t + δt + ωi,t,

where Ii,g,t is a dummy variable that equals to 1 if individual i belongs to income group g at year-month t,
and Xi,t is a vector of observed individual characteristics. For the MSC dataset, we control for age, gender,
education, birth cohort, marital status, region, and the number of kids and adults in the household. It is
worth noting that controlling for the birth cohort helps address concerns regarding the impact of inflation
experiences on households’ inflation expectations (Malmendier and Nagel, 2016). For the SCE dataset, we
control for age group, numeracy, education, and region. Table H.2 reports the results. Again, we use the
poorest group (Group 1) as the base group for both the MSC and SCE datasets. Even after controlling for
additional individual characteristics, the biases in forecasts persist and exhibit a negative correlation with
households’ income levels.

Table H.2: Bias of Forecast Errors Controlling Individual Characteristics: MSC and SCE

MSC SCE

Constant −2.370∗∗∗ −5.222∗∗∗
(0.288) (0.239)

Group 2 0.162∗∗∗ 1.819∗∗∗
(0.036) (0.110)

Group 3 0.573∗∗∗ 2.421∗∗∗
(0.030) (0.124)

Group 4 0.856∗∗∗ 3.200∗∗∗
(0.032) (0.184)

Group 5 0.989∗∗∗ 3.728∗∗∗
(0.034) (0.244)

Group 6 1.223∗∗∗
(0.024)

Group 7 1.510∗∗∗
(0.031)

Demographics Yes Yes
Birth Cohort Yes No
Age Yes Yes
Region Yes Yes
Time fixed effects Yes Yes
Obs. 146,622 134,190
* p<0.1, ** p<0.05, *** p<0.001.

H.2 CG and BGMS regressions

As a comparison to the group-specific CG and BGMS coefficients derived from our model, we run the cor-
responding CG and BGMS regressions using data from the Michigan Survey of Consumers and the Survey
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of Consumer Expectations. The term structure of the forecasts is not available in these datasets, preventing
us from constructing exact forecast revisions. As a compromise, we consider the following closely related
regressions instead:

CG: πt+1 − Ēt [πt+1] = α+ βCG
(
Ēt [πt+1]− Ēt−1 [πt]

)
+ ϵt+1, (H.1)

BGMS: πt+1 − Eit [πt+1] = α+ βBGMS (Eit [πt+1]− Eit−1 [πt]) + ϵit+1. (H.2)

Columns (1)-(2) in Table H.3 display the results for the MSC, and columns (5)-(6) display the results for the
SCE. At the individual level, the BGMS regression coefficients are more negative for poorer households, while
the CG regression coefficients are larger for richer households. These results are broadly consistent with our
model’s predictions.

Table H.3: CG and BGMS Estimates: MSC and SCE

MSC SCE

(1) (2) (3) (4) (5) (6) (7) (8)
BGMS CG CG (IV) F-Stat BGMS CG CG (IV) F-Stat

Group 1 −0.555∗∗∗ −0.411∗∗∗ 0.599∗ 14.08 −0.510∗∗∗ −0.366∗∗∗ −0.294 5.98
(0.048) (0.101) (0.349) (0.184) (0.129) (0.817)

Group 2 −0.433∗∗∗ −0.314∗∗ 2.030∗∗ 5.13 −0.438∗∗∗ −0.267∗ 0.814 2.67
(0.040) (0.145) (0.919) (0.014) (0.136) (0.915)

Group 3 −0.394∗∗∗ −0.206 1.079∗∗ 9.04 −0.421∗∗∗ −0.287 3.878 0.41
(0.026) (0.266) (0.488) (0.015) (0.183) (5.987)

Group 4 −0.392∗∗∗ −0.169 0.491∗ 24.87 −0.407∗∗∗ 0.299 3.030 3.61
(0.031) (0.230) (0.285) (0.019) (0.330) (2.920)

Group 5 −0.378∗∗∗ −0.147 0.982∗∗∗ 10.67 −0.376∗∗∗ 0.304 3.191∗ 12.44
(0.028) (0.260) (0.382) (0.035) (0.341) (1.900)

Group 6 −0.399∗∗∗ 0.054 0.795∗∗ 17.56
(0.018) (0.370) (0.339)

Group 7 −0.418∗∗∗ 0.011 0.980∗∗ 9.85
(0.017) (0.301) (0.481)

* p<0.1, ** p<0.05, *** p<0.001.

However, due to the previously mentioned data limitations, the approximating regressions (H.1) and (H.2)
may suffer from an endogeneity issue.38 We follow Coibion and Gorodnichenko (2015) and use oil prices as the
instrumental variable. Unfortunately, while the instrumental variable is strong enough for the entire sample,

38The error term ϵt+1 in the CG specification above contains not only the rational expectations forecast errors ϵ̂t+1

but also the expected change in inflation βCG
(
Ēt−1 [πt+1]− Ēt−1 [πt]

)
. Under rational expectations, ϵ̂t+1 is uncorrelated

with the consensus forecast error πt+1 − Ēt [πt+1]. However, the covariance between the expected change in inflation
βCG

(
Ēt−1 [πt+1]− Ēt−1 [πt]

)
and the consensus forecast error πt+1 − Ēt [πt+1] is correlated as long as the inflation

process is not a random walk. Therefore, the error term ϵt+1 will be correlated with the forecast error on the left-hand
side. Note that the reason for this endogeneity issue arises from the fact that neither the MSC nor the SCE provides
the term structure of forecasts. As a result, forecasts are imperfectly overlapped.
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it tends to be weak when segmenting the sample by different income groups (see the F -statistics in Columns
(4) and (8)). Bearing in mind the weak IV issue, the CG coefficient generally increases with income, a trend
that is more pronounced in the SCE data.

H.3 Balance-sheet effects

This section addresses the concern that balance-sheet effects may overturn the effects of inflation on labor
income. We argue that this is unlikely to be the case.

First, notice that balance-sheet effects are primarily relevant for capital income, which constitutes a relatively
small share of total income, especially for the income-poor. In Table H.4, we document the shares of different
sources of income using the Survey of Consumer Finances, since this data is not available in the Michigan
Survey.39 For all households, capital and business income represent a relatively small share of total income,
and this is especially true for the bottom four quintiles of income. The table also shows that the bottom
quintiles of income have relatively low levels of net worth. With this in mind, one would expect that even the
large proportional effects documented by Doepke and Schneider (2006) would be dominated by the effects of
inflation on labor and transfer incomes.

Table H.4: Income Sources (%) by Quintiles of Income

Quintiles of Income

1st 2nd 3rd 4th 5th

Labor 48.9 77.3 83.4 85.8 64.3
Capital 0.1 0.4 0.3 0.8 10.8
Business 6.2 5.4 5.9 5.6 18.7
Transfer 37.3 15.0 9.2 7.1 2.4
Other 7.5 1.8 1.2 0.7 3.7

Total Income 2.7 6.3 10.7 17.2 63.2
Net Worth 1.4 2.7 5.4 9.9 80.7

Notes: Calculated using data from the 2016 Survey of Consumer Finances. We use the definitions from Kuhn and
Ríos-Rull (2016) and limit the sample to heads of households aged 18 to 65, for comparability with the results in the
paper. We also choose the 2016 wave of the survey as it is roughly in the middle of the time sample we use in the
paper.

One way to assess the overall effect of inflation on different households is to estimate a quantitative structural
model incorporating the relevant mechanisms and heterogeneity, and then compute the conditional welfare
effects for different groups. This approach is pursued by Cao, Meh, Ríos-Rull, and Terajima (2021). They
find that poorer households are more negatively affected by inflation:

39The seven groups from the MSC sample have average incomes, in thousands of 2016 dollars, of
{12.9, 24.5, 40.5, 59.8, 74.5, 104.9, 216.8}, while the quintiles of income from the SCF show averages of
{13.9, 33.0, 56.4, 90.3, 331.2}. Although the top income levels from the SCF are higher, reflecting its detailed ap-
proach to top-coding issues, the bottom four quintiles align relatively well with the MSC groups. The net worth levels
for these income quintiles in the SCF, again in thousands of 2016 dollars, are {39.2, 75.0, 156.2, 287.0, 2322.3}.
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Table H.5: Concern About Inflation (%) by Income Levels

Income Levels (thousands of dollars)

<25 25–35 35–50 50–75 75–100 100–150 150–200 >200

Very concerned 66.5 62.2 60.9 57.3 53.9 46.1 38.7 24.0
Somewhat concerned 17.9 20.6 21.7 23.0 21.9 26.2 27.3 28.2
A little concerned 10.4 12.6 13.1 14.4 16.7 19.1 22.2 29.5
Not at all concerned 5.2 4.5 4.2 5.3 7.5 8.6 11.8 18.3

Notes: Calculated using data from the 2024 House Pulse Survey. This survey started in 2020, so we selected the most
recent wave to try to mitigate the impact of Covid-related concerns. Similar results are reported, using data from 2021,
by Jayashankar and Murphy (2023).

“An increase in inflation from 2% to 5% costs 13% of one-year consumption. [...] From the point of
view of consumption class, the poor lose a lot more than the rich: 37.0% of 2010 consumption versus
5.6% for the poorest and richest quintiles.”

The same conclusions can be drawn from the Census Bureau’s Household Pulse Survey data, which includes
the question, “In the area where you live and shop, how concerned are you, if at all, that prices will increase
in the next six months?” In Table H.5, we present the results categorized by income brackets. A clear pattern
can be observed, with the inflation concern monotonically decreasing as income levels increase.
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